Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
AAAI Technical Track: Human-AI Collaboration
Downloads:
Abstract:
Gradient boosted models are a fundamental machine learning technique. Robustness to small perturbations of the input is an important quality measure for machine learning models, but the literature lacks a method to prove the robustness of gradient boosted models.This work introduces VERIGB, a tool for quantifying the robustness of gradient boosted models. VERIGB encodes the model and the robustness property as an SMT formula, which enables state of the art verification tools to prove the model’s robustness. We extensively evaluate VERIGB on publicly available datasets and demonstrate a capability for verifying large models. Finally, we show that some model configurations tend to be inherently more robust than others.
DOI:
10.1609/aaai.v33i01.33012446
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33