Proceedings:
No. 2: AAAI-22 Technical Tracks 2
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Technical Track on Computer Vision II
Downloads:
Abstract:
Limited by the locality of convolutional neural networks, most existing local features description methods only learn local descriptors with local information and lack awareness of global and surrounding spatial context. In this work, we focus on making local descriptors ``look wider to describe better'' by learning local Descriptors with More Than Local information (MTLDesc). Specifically, we resort to context augmentation and spatial attention mechanism to make the descriptors obtain non-local awareness. First, Adaptive Global Context Augmented Module and Diverse Local Context Augmented Module are proposed to construct robust local descriptors with context information from global to local. Second, we propose the Consistent Attention Weighted Triplet Loss to leverage spatial attention awareness in both optimization and matching of local descriptors. Third, Local Features Detection with Feature Pyramid is proposed to obtain more stable and accurate keypoints localization. With the above innovations, the performance of the proposed MTLDesc significantly surpasses the current state-of-the-art local descriptors on HPatches, Aachen Day-Night localization and InLoc indoor localization benchmarks. Our code is available at https://github.com/vignywang/MTLDesc.
DOI:
10.1609/aaai.v36i2.20138
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36