Abstract:
We study the ability of a simple mutation-only evolutionary algorithm to solve propositional satisfiability formulas with inherent community structure. We show that the community structure translates to good fitness-distance correlation properties, which implies that the objective function provides a strong signal in the search space for evolutionary algorithms to locate a satisfying assignment efficiently. We prove that when the formula clusters into communities of size s ∈ ω(logn) ∩O(nε/(2ε+2)) for some constant 0 <ε< 1, and there is a nonuniform distribution over communities, a simple evolutionary algorithm called the (1+1) EA finds a satisfying assignment in polynomial time on a 1−o(1) fraction of formulas with at least constant constraint density. This is a significant improvement over recent results on uniform random formulas, on which the same algorithm has only been proven to be efficient on uniform formulas of at least logarithmic density.
DOI:
10.1609/aaai.v33i01.33012346