Proceedings:
No. 3: AAAI-21 Technical Tracks 3
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Computer Vision II
Downloads:
Abstract:
Temporal Action Segmentation (TAS) has achieved great success in many fields such as exercise rehabilitation, movie editing, etc. Currently, task-driven TAS is a central topic in human action analysis. However, motion-centered TAS, as an important topic, is little researched due to unavailable datasets. In order to explore more models and practical applications of motion-centered TAS, we introduce a Motion-Centered Figure Skating (MCFS) dataset in this paper. Compared with existing temporal action segmentation datasets, the MCFS dataset is fine-grained semantic, specialized and motion-centered. Besides, RGB-based and Skeleton-based features are provided in the MCFS dataset. Experimental results show that existing state-of-the-art methods are difficult to achieve excellent segmentation results (including accuracy, edit and F1 score) in the MCFS dataset. This indicates that MCFS is a challenging dataset for motion-centered TAS. The latest dataset can be downloaded at https://shenglanliu.github.io/mcfs-dataset/.
DOI:
10.1609/aaai.v35i3.16314
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35