Abstract:
We study the fair allocation of a cake, which serves as a metaphor for a divisible resource, under the requirement that each agent should receive a contiguous piece of the cake. While it is known that no finite envy-free algorithm exists in this setting, we exhibit efficient algorithms that produce allocations with low envy among the agents. We then establish NP-hardness results for various decision problems on the existence of envy-free allocations, such as when we fix the ordering of the agents or constrain the positions of certain cuts. In addition, we consider a discretized setting where indivisible items lie on a line and show a number of hardness results strengthening those from prior work.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i02.5570