Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 02: AAAI-20 Technical Tracks 2
Track:
AAAI Technical Track: Game Theory and Economic Paradigms
Downloads:
Abstract:
VCG is a classical combinatorial auction that maximizes social welfare. However, while the standard single-item Vickrey auction is false-name-proof, a major failure of multi-item VCG is its vulnerability to false-name attacks. This occurs already in the natural bare minimum model in which there are two identical items and bidders are single-minded. Previous solutions to this challenge focused on developing alternative mechanisms that compromise social welfare. We re-visit the VCG auction vulnerability and consider the bidder behavior in Bayesian settings. In service of that we introduce a novel notion, termed the granularity threshold, that characterizes VCG Bayesian resilience to false-name attacks as a function of the bidder type distribution. Using this notion we show a large class of cases in which VCG indeed obtains Bayesian resilience for the two-item single-minded setting.
DOI:
10.1609/aaai.v34i02.5567
AAAI
Vol. 34 No. 02: AAAI-20 Technical Tracks 2
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved