DOI:
10.1609/aaai.v33i01.33011909
Abstract:
We introduce the ELECTION ISOMORPHISM problem and a family of its approximate variants, which we refer to as dISOMORPHISM DISTANCE (d-ID) problems (where d is a metric between preference orders). We show that ELECTION ISOMORPHISM is polynomial-time solvable, and that the d-ISOMORPHISM DISTANCE problems generalize various classic rank-aggregation methods (e.g., those of Kemeny and Litvak). We establish the complexity of our problems (including their inapproximability) and provide initial experiments regarding the ability to solve them in practice.