Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 02: AAAI-20 Technical Tracks 2
Track:
AAAI Technical Track: Game Playing and Interactive Entertainment
Downloads:
Abstract:
Automatic Storytelling has consistently been a challenging area in the field of natural language processing. Despite considerable achievements have been made, the gap between automatically generated stories and human-written stories is still significant. Moreover, the limitations of existing automatic storytelling methods are obvious, e.g., the consistency of content, wording diversity. In this paper, we proposed a multi-pass hierarchical conditional variational autoencoder model to overcome the challenges and limitations in existing automatic storytelling models. While the conditional variational autoencoder (CVAE) model has been employed to generate diversified content, the hierarchical structure and multi-pass editing scheme allow the story to create more consistent content. We conduct extensive experiments on the ROCStories Dataset. The results verified the validity and effectiveness of our proposed model and yields substantial improvement over the existing state-of-the-art approaches.
DOI:
10.1609/aaai.v34i02.5538
AAAI
Vol. 34 No. 02: AAAI-20 Technical Tracks 2
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved