Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 01: AAAI-20 Technical Tracks 1
Track:
AAAI Technical Track: Applications
Downloads:
Abstract:
Hurricanes are powerful tropical cyclones with sustained wind speeds ranging from at least 74 mph (for category 1 storms) to more than 157 mph (for category 5 storms). Accurate prediction of the storm tracks is essential for hurricane preparedness and mitigation of storm impacts. In this paper, we cast the hurricane trajectory forecasting task as an online multi-lead time location prediction problem and present a framework called OMuLeT to improve path prediction by combining the 6-hourly and 12-hourly forecasts generated from an ensemble of dynamical (physical) hurricane models. OMuLeT employs an online learning with restart strategy to incrementally update the weights of the ensemble model combination as new observation data become available. It can also handle the varying dynamical models available for predicting the trajectories of different hurricanes. Experimental results using the Atlantic and Eastern Pacific hurricane data showed that OMuLeT significantly outperforms various baseline methods, including the official forecasts produced by the U.S. National Hurricane Center (NHC), by more than 10% in terms of its 48-hour lead time forecasts.
DOI:
10.1609/aaai.v34i01.5444
AAAI
Vol. 34 No. 01: AAAI-20 Technical Tracks 1
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved