Abstract:
Spatial-temporal network data forecasting is of great importance in a huge amount of applications for traffic management and urban planning. However, the underlying complex spatial-temporal correlations and heterogeneities make this problem challenging. Existing methods usually use separate components to capture spatial and temporal correlations and ignore the heterogeneities in spatial-temporal data. In this paper, we propose a novel model, named Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN), for spatial-temporal network data forecasting. The model is able to effectively capture the complex localized spatial-temporal correlations through an elaborately designed spatial-temporal synchronous modeling mechanism. Meanwhile, multiple modules for different time periods are designed in the model to effectively capture the heterogeneities in localized spatial-temporal graphs. Extensive experiments are conducted on four real-world datasets, which demonstrates that our method achieves the state-of-the-art performance and consistently outperforms other baselines.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i01.5438