• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • News
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

  • Twitter
  • Facebook
  • LinkedIn
Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 34

MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning

February 1, 2023

Download PDF

Abstract:

Compressed sensing magnetic resonance imaging (CS-MRI) is a technique aimed at accelerating the data acquisition of MRI. While down-sampling in k-space proportionally reduces the data acquisition time, it results in images corrupted by aliasing artifacts and blur. To reconstruct images from the down-sampled k-space, recent deep-learning based methods have shown better performance compared with classical optimization-based CS-MRI methods. However, they usually use deep neural networks as a black-box, which directly maps the corrupted images to the target images from fully-sampled k-space data. This lack of transparency may impede practical usage of such methods. In this work, we propose a deep reinforcement learning based method to reconstruct the corrupted images with meaningful pixel-wise operations (e.g. edge enhancing filters), so that the reconstruction process is transparent to users. Specifically, MRI reconstruction is formulated as Markov Decision Process with discrete actions and continuous action parameters. We conduct experiments on MICCAI dataset of brain tissues and fastMRI dataset of knee images. Our proposed method performs favorably against previous approaches. Our trained model learns to select pixel-wise operations that correspond to the anatomical structures in the MR images. This makes the reconstruction process more interpretable, which would be helpful for further medical analysis.

Published Date: 2020-06-02

Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)

Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved

Authors

Wentian Li

Tsinghua University


Xidong Feng

Tsinghua University


Haotian An

Tsinghua University


Xiang Yao Ng

Tsinghua University


Yu-Jin Zhang

Tsinghua University


DOI:

10.1609/aaai.v34i01.5423


Topics: AAAI

Primary Sidebar

HOW TO CITE:

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020) 792-799.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning AAAI 2020, 792-799.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang (2020). MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 792-799.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang. MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34 2020 p.792-799.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang. 2020. MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning. "Proceedings of the AAAI Conference on Artificial Intelligence, 34". 792-799.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang. (2020) "MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning", Proceedings of the AAAI Conference on Artificial Intelligence, 34, p.792-799

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang, "MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning", AAAI, p.792-799, 2020.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang. "MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence, 34, 2020, p.792-799.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang. "MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence, 34, (2020): 792-799.

Wentian Li||Xidong Feng||Haotian An||Xiang Yao Ng||Yu-Jin Zhang. MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning. AAAI[Internet]. 2020[cited 2023]; 792-799.


ISSN: 2374-3468


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT