• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • News
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

  • Twitter
  • Facebook
  • LinkedIn
Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 18 / Book One

Optimal Depth-First Strategies for And-Or Trees

February 1, 2023

Download PDF

Abstract:

Many tasks require evaluating a specified boolean expression f over a set of probabilistic tests where we know the probability that each test will succeed, and also the cost of performing each test. A strategy specifies when to perform which test, towards determining the overall outcome of f. This paper investigates the challenge of finding the strategy with the minimum expected cost. We observe first that this task is typically NP-hard -- eg, when tests can occur many times within f, or when there are probabilistic correlations between the test outcomes. We therefore focus on the situation where the tests are probabilistically independent and each appears only once in f. Here, f can be written as an and-or tree, where each internal node corresponds to either the "And" or "Or" of its children, and each leaf node is a probabilistic test. There is an obvious depth-first approach to evaluating such and-or trees: First evaluate each penultimate subtree in isolation; then reduce this subtree to a single "mega-test" with appropriate cost and probability, and recur on the resulting reduced tree. After formally defining this approach, we show first that it produces the optimal strategy for shallow (depth 1 or 2) and-or trees, then show it can be arbitrarily bad for deeper trees. We next consider a larger, natural subclass of strategies -- those that can be expressed as a linear sequence of tests -- and show that the best such "linear strategy" can also be very much worse than the optimal strategy in general. Finally, we show that our results hold in a more general model, where internal nodes can also be probabilistic tests.

Authors

Russell Greiner and Ryan Hayward

University of Alberta; Michael Molloy

University of Toronto

DOI:


Topics: AAAI

Primary Sidebar

HOW TO CITE:

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto Optimal Depth-First Strategies for And-Or Trees Proceedings of the AAAI Conference on Artificial Intelligence, 18 (2002) 725.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto Optimal Depth-First Strategies for And-Or Trees AAAI 2002, 725.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto (2002). Optimal Depth-First Strategies for And-Or Trees. Proceedings of the AAAI Conference on Artificial Intelligence, 18, 725.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto. Optimal Depth-First Strategies for And-Or Trees. Proceedings of the AAAI Conference on Artificial Intelligence, 18 2002 p.725.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto. 2002. Optimal Depth-First Strategies for And-Or Trees. "Proceedings of the AAAI Conference on Artificial Intelligence, 18". 725.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto. (2002) "Optimal Depth-First Strategies for And-Or Trees", Proceedings of the AAAI Conference on Artificial Intelligence, 18, p.725

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto, "Optimal Depth-First Strategies for And-Or Trees", AAAI, p.725, 2002.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto. "Optimal Depth-First Strategies for And-Or Trees". Proceedings of the AAAI Conference on Artificial Intelligence, 18, 2002, p.725.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto. "Optimal Depth-First Strategies for And-Or Trees". Proceedings of the AAAI Conference on Artificial Intelligence, 18, (2002): 725.

Russell Greiner and Ryan Hayward|| University of Alberta; Michael Molloy|| University of Toronto. Optimal Depth-First Strategies for And-Or Trees. AAAI[Internet]. 2002[cited 2023]; 725.


ISSN:


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT