Proceedings:
Vol. 10 No. 1 (2016): Tenth International AAAI Conference on Web and Social Media
Volume
Issue:
Vol. 10 No. 1 (2016): Tenth International AAAI Conference on Web and Social Media
Track:
Poster Papers
Downloads:
Abstract:
Speech acts are a way to conceptualize speech as action. This holds true for communication on any platform, including social media platforms such as Twitter. In this paper, we explored speech act recognition on Twitter by treating it as a multi-class classification problem. We created a taxonomy of six speech acts for Twitter and proposed a set of semantic and syntactic features. We trained and tested a logistic regression classifier using a data set of manually labelled tweets. Our method achieved a state-of-the-art performance with an average F1 score of more than 0.70. We also explored classifiers with three different granularities (Twitter-wide, type-specific and topic-specific) in order to find the right balance between generalization and overfitting for our task.
DOI:
10.1609/icwsm.v10i1.14821
ICWSM
Vol. 10 No. 1 (2016): Tenth International AAAI Conference on Web and Social Media