• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence

The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research

February 1, 2023

Download PDF

Authors

John Kalantari

Mayo Clinic


Heidi Nelson

Mayo Clinic


Nicholas Chia

Mayo Clinic


DOI:

10.1609/aaai.v34i01.5380


Abstract:

The “No Free Lunch” theorem states that for any algorithm, elevated performance over one class of problems is offset by its performance over another. Stated differently, no algorithm works for everything. Instead, designing effective algorithms often means exploiting prior knowledge of data relationships specific to a given problem. This “unreasonable efficacy” is especially desirable for complex and seemingly intractable problems in the natural sciences. One such area that is rife with the need for better algorithms is cancer biology—a field where relatively few insights are being generated from relatively large amounts of data. In part, this is due to the inability of mere statistics to reflect cancer as a genetic evolutionary process—one that involves cells actively mutating in order to navigate host barriers, outcompete neighboring cells, and expand spatially.Our work is built upon the central proposition that the Markov Decision Process (MDP) can better represent the process by which cancer arises and progresses. More specifically, by encoding a cancer cell's complex behavior as a MDP, we seek to model the series of genetic changes, or evolutionary trajectory, that leads to cancer as an optimal decision process. We posit that using an Inverse Reinforcement Learning (IRL) approach will enable us to reverse engineer an optimal policy and reward function based on a set of “expert demonstrations” extracted from the DNA of patient tumors. The inferred reward function and optimal policy can subsequently be used to extrapolate the evolutionary trajectory of any tumor. Here, we introduce a Bayesian nonparametric IRL model (PUR-IRL) where the number of reward functions is a priori unbounded in order to account for uncertainty in cancer data, i.e., the existence of latent trajectories and non-uniform sampling. We show that PUR-IRL is “unreasonably effective” in gaining interpretable and intuitive insights about cancer progression from high-dimensional genome data.

Topics: AAAI

Primary Sidebar

HOW TO CITE:

John Kalantari||Heidi Nelson||Nicholas Chia The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research Proceedings of the AAAI Conference on Artificial Intelligence (2020) 437-445.

John Kalantari||Heidi Nelson||Nicholas Chia The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research AAAI 2020, 437-445.

John Kalantari||Heidi Nelson||Nicholas Chia (2020). The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research. Proceedings of the AAAI Conference on Artificial Intelligence, 437-445.

John Kalantari||Heidi Nelson||Nicholas Chia. The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research. Proceedings of the AAAI Conference on Artificial Intelligence 2020 p.437-445.

John Kalantari||Heidi Nelson||Nicholas Chia. 2020. The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research. "Proceedings of the AAAI Conference on Artificial Intelligence". 437-445.

John Kalantari||Heidi Nelson||Nicholas Chia. (2020) "The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research", Proceedings of the AAAI Conference on Artificial Intelligence, p.437-445

John Kalantari||Heidi Nelson||Nicholas Chia, "The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research", AAAI, p.437-445, 2020.

John Kalantari||Heidi Nelson||Nicholas Chia. "The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research". Proceedings of the AAAI Conference on Artificial Intelligence, 2020, p.437-445.

John Kalantari||Heidi Nelson||Nicholas Chia. "The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research". Proceedings of the AAAI Conference on Artificial Intelligence, (2020): 437-445.

John Kalantari||Heidi Nelson||Nicholas Chia. The Unreasonable Effectiveness of Inverse Reinforcement Learning in Advancing Cancer Research. AAAI[Internet]. 2020[cited 2023]; 437-445.


ISSN: 2374-3468


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT