Proceedings:
Proceedings Of The Sixth International Conference On Artificial Intelligence Planning And Scheduling
Volume
Issue:
Proceedings Of The Sixth International Conference On Artificial Intelligence Planning And Scheduling
Track:
Contents
Downloads:
Abstract:
Unary operator domains - i.e., domains in which operators have a single effect - arise naturally in many control problems. In its most general form, the problem of STRIPS planning in unary operator domains is known to be as hard as the general STRIPS planning problem - both are PSPACE-complete. However, unary operator domains induce a natural structure, called the domain’s causal graph. This graph relates between the preconditions and effect of each domain operator. Causal graphs were exploited by Williams and Nayak in order to analyze plan generation for one of the controllers in NASA’s Deep-Space One spacecraft. There, they utilized the fact that when this graph is a tree, a serialization ordering over any subgoal can be obtained quickly. In this paper we conduct a comprehensive study of the relationship between the structure of a domain’s causal graph and the complexity of planning in this domain. On the positive side, we show that a non-trivial polynomial time plan generation algorithm exists for domains whose causal graph induces a polytree with a constant bound on its node indegree. On the negative side, we show that even plan existence is hard when the graph is a singly connected DAG. More generally, we show that the number of paths in the causal graph is closely related to the complexity of planning in the associated domain. Finally we relate our results to the question of complexity of planning with serializable subgoals.
AIPS
Proceedings Of The Sixth International Conference On Artificial Intelligence Planning And Scheduling