Proceedings:
Vol. 14 (2020): Fourteenth International AAAI Conference on Web and Social Media
Volume
Issue:
Vol. 14 (2020): Fourteenth International AAAI Conference on Web and Social Media
Track:
Full Papers
Downloads:
Abstract:
Content has historically been the primary lens used to study language in online communities. This paper instead focuses on the linguistic style of communities. While we know that individuals have distinguishable styles, here we ask whether communities have distinguishable styles. Additionally, while prior work has relied on a narrow definition of style, we employ a broad definition involving 262 features to analyze the linguistic style of 9 online communities from 3 social media platforms discussing politics, television and travel. We find that communities indeed have distinct styles. Also, style is an excellent predictor of group membership (F-score 0.952 and Accuracy 96.09%). While on average it is statistically equivalent to predictions using content alone, it is more resilient to reductions in training data.
DOI:
10.1609/icwsm.v14i1.7306
ICWSM
Vol. 14 (2020): Fourteenth International AAAI Conference on Web and Social Media