• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Papers from the 1999 AAAI Spring Symposium

Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling

March 14, 2023

Download PDF

Authors

H. G. Claycamp

N. B. Sussman

O. Macina

H. S. Rosenkranz

DOI:


Abstract:

There are two broadly-defined applications of artificial neural networks (ANNs) in SAR/QSAR modeling. The first is the use of ANNs as prespocessors in order to transform descriptors into a form amenable to statistical analyses, such as regression modeling or linear discriminant analysis. This class of application often uses self-organizing feature map (SOFM) networks. For example, SOFMs are used to reduce three-dimensional spatial descriptors to two-dimensional matrices. The second major application of neual networks is as a statistical tool with which to classify chemicals by activity under a given biological end point. The neural network classification models are analogous to those derived from binary logistic regression (LR) or linear discriminant analysis (LDA). Like its statistical counterparts, a neural network can be developed for use in predictive toxicology. Our group has been using neural networks primarily as classifiers for problems in predicitive SAR/QSAR modeling. Case studies have been derived from data bases consisting of chemicals calssified as carcinogens, mutagens or under various non-cancer end points. Our analyses using neural networks are typically compared side-by-side with LR and LDA. Results obtained thus far show that ANNs can perform on an equal footing with the statistical tools when measured in terms of overall predictivity or the models. While the ANNs are easy to adapt to SAR/QSAR problems, the technique is limited by a lack of developed methodology for selecting the best variable subsets for the model: basic modeling diagnostics and network pruning procedures are often performed manually, as opposed to the "automatic" procedures in best subsets or stepwise regression techniques. Ultimately, combinations of neural networks and statistical methods might prove the be the best approach to predictive SAR/QSAR modeling. Examples of ANN aaplications will be presented and compared with models from statistical techniques.

Topics: Spring

Primary Sidebar

HOW TO CITE:

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling Papers from the 1999 AAAI Spring Symposium (1999) .

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling Spring 1999, .

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz (1999). Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling. Papers from the 1999 AAAI Spring Symposium, .

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz. Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling. Papers from the 1999 AAAI Spring Symposium 1999 p..

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz. 1999. Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling. "Papers from the 1999 AAAI Spring Symposium". .

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz. (1999) "Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling", Papers from the 1999 AAAI Spring Symposium, p.

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz, "Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling", Spring, p., 1999.

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz. "Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling". Papers from the 1999 AAAI Spring Symposium, 1999, p..

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz. "Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling". Papers from the 1999 AAAI Spring Symposium, (1999): .

H. G. Claycamp||N. B. Sussman||O. Macina||H. S. Rosenkranz. Artificial Neural Networks As Statistical Tools In SAR/QSAR Modeling. Spring[Internet]. 1999[cited 2023]; .


ISSN:


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT