Abstract:
Point-of-Interest (POI) recommendation has been a trending research topic as it generates personalized suggestions on facilities for users from a large number of candidate venues. Since users' check-in records can be viewed as a long sequence, methods based on recurrent neural networks (RNNs) have recently shown promising applicability for this task. However, existing RNN-based methods either neglect users' long-term preferences or overlook the geographical relations among recently visited POIs when modeling users' short-term preferences, thus making the recommendation results unreliable. To address the above limitations, we propose a novel method named Long- and Short-Term Preference Modeling (LSTPM) for next-POI recommendation. In particular, the proposed model consists of a nonlocal network for long-term preference modeling and a geo-dilated RNN for short-term preference learning. Extensive experiments on two real-world datasets demonstrate that our model yields significant improvements over the state-of-the-art methods.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i01.5353