Proceedings:
Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools
Volume
Issue:
Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools
Track:
Contents
Downloads:
Abstract:
A wide panoply of machine learning methods is available for application to the Predictive Toxicology Evaluation (PTE) problem. The authors have built four monolithic classification systems based on Tilde, Progol, C4.5 and naive bayesian classification. These systems have been trained using the PTE dataset, and their accuracy has been tested using the unseen PTE1 data set as test set. A Multi Agent Decision System (MADES) has been built using the aforementioned monolithic systems to build classification agents. The MADES was trained and tested with the same data sets used with the monolithic systems. Results show that the accuracy of the MADES improves the accuracies obtained by the monolithic systems. We believe that in most real world domains the combination of several approaches is stronger than the individuals.
Spring
Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools