• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Papers from the 2005 AAAI Fall Symposium / fall-2005-05

Understanding Activity: Learning the Language of Action

March 14, 2023

Download PDF

Authors

Randal Nelson and Yiannis Aloimonos

DOI:


Abstract:

problem, both from the standpoint of practical applications, and as a central issue in attempting to describe the phenomenon of intelligence. On the practical side, there are a large number of applications that would benefit from improved machine ability to analyze activity. The most prominent are various surveillance scenarios. The current emphasis on homeland security has brought this issue to the forefront, and resulted in considerable work on mostly low- level detection schemes. There are also applications in medical diagnosis and household assistants that, in the long run, may be even more important. In addition, there are numerous scientific projects, ranging from monitoring of weather conditions to observation of animal behavior that would be facilitated by automatic understanding of activity. From a scientific standpoint, understanding activity understanding is central to understanding intelligence. Analyzing what is happening in the environment, and acting on the results of that analysis is, to a large extent, what natural intelligent systems do, whether they are human or animal. Artificial intelligences, if we want them to work with people in the natural world, will need commensurate abilities. The importance of the problem has not gone unrecognized. There is a substantial body of work on various components of the problem, most especially on change detection, motion analysis, and tracking. More recently, in the context of surveillance applications, there have been some preliminary efforts to come up with a general ontology of human activity. These efforts have largely been top-down in the classic AI tradition, and, as with earlier analogous effort in areas such as object recognition and scene understanding, have seen limited practical application because of the difficulty in robustly extracting the putative primitives on which the top- down formalism is based. We propose a novel alternative approach, where understanding activity is centered on perception and the abstraction of compact representations from that perception. Specifically, a system receives raw sensory input, and must base its understanding on information that is actually extractable from these data streams. We will concentrate on video streams, but we will presume that auditory, tactile, or proprioceptive streams might be used as well. There has been significant recent progress in what has been loosely termed image-based object and action recognition. The relevant aspect of the image-based approach is that the primitives that are assembled to produce a percept of an object or an action are extracted from statistical analysis of the perceptual data. We see this feature learning and first-level recognition as representative of the sort of abstraction that is necessary for understanding at all levels. We think that the statistical feature abstraction processes, and the structural grammars that permit them to be assembled in space (for object recognition) and time (for action recognition), can be extended to 1), reduce the human input required and 2), generate a higher level of abstraction. The resulting concept extraction process will produce a compact, extensible representation that enables event-based organization and recall, predictive reasoning, and natural language communication in a system observing activity in natural environments. This process of repeated abstraction and organization will naturally induce a symbolic structure onto the observed world. This approach is in contrast to certain classical approaches where understanding is based on analysis of input that is already in symbolic/linguistic form. Challenging problems can be found in this approach; however we feel that the state-of-the-art in extracting symbolic descriptions from real-world data remains so primitive that little can be assumed about the information that might be available. In fact, the extraction of the symbolic description is the primary problem, and the focus should be on making constructive use of what can be extracted, rather than on artificially formal problems constructed about what we hope might be extractable.

Topics: Fall

Primary Sidebar

HOW TO CITE:

Randal Nelson and Yiannis Aloimonos Understanding Activity: Learning the Language of Action Papers from the 2005 AAAI Fall Symposium (2005) .

Randal Nelson and Yiannis Aloimonos Understanding Activity: Learning the Language of Action Fall 2005, .

Randal Nelson and Yiannis Aloimonos (2005). Understanding Activity: Learning the Language of Action. Papers from the 2005 AAAI Fall Symposium, .

Randal Nelson and Yiannis Aloimonos. Understanding Activity: Learning the Language of Action. Papers from the 2005 AAAI Fall Symposium 2005 p..

Randal Nelson and Yiannis Aloimonos. 2005. Understanding Activity: Learning the Language of Action. "Papers from the 2005 AAAI Fall Symposium". .

Randal Nelson and Yiannis Aloimonos. (2005) "Understanding Activity: Learning the Language of Action", Papers from the 2005 AAAI Fall Symposium, p.

Randal Nelson and Yiannis Aloimonos, "Understanding Activity: Learning the Language of Action", Fall, p., 2005.

Randal Nelson and Yiannis Aloimonos. "Understanding Activity: Learning the Language of Action". Papers from the 2005 AAAI Fall Symposium, 2005, p..

Randal Nelson and Yiannis Aloimonos. "Understanding Activity: Learning the Language of Action". Papers from the 2005 AAAI Fall Symposium, (2005): .

Randal Nelson and Yiannis Aloimonos. Understanding Activity: Learning the Language of Action. Fall[Internet]. 2005[cited 2023]; .


ISSN:


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT