Published:
2020-10-09
Proceedings:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 8
Volume
Issue:
Vol. 8 (2020): Proceedings of the Eighth AAAI Conference on Human Computation and Crowdsourcing
Track:
Short Papers
Downloads:
Abstract:
In this paper we propose an approach to exploit the fine-grained knowledge expressed by individual human annotators during a hate speech (HS) detection task, before the aggregation of single judgments in a gold standard dataset eliminates non-majority perspectives. We automatically divide the annotators into groups, aiming at grouping them by similar personal characteristics (ethnicity, social background, culture etc.). To serve a multi-lingual perspective, we performed classification experiments on three different Twitter datasets in English and Italian languages. We created different gold standards, one for each group, and trained a state-of-the-art deep learning model on them, showing that supervised models informed by different perspectives on the target phenomena outperform a baseline represented by models trained on fully aggregated data. Finally, we implemented an ensemble approach that combines the single perspective-aware classifiers into an inclusive model. The results show that this strategy further improves the classification performance, especially with a significant boost in the recall of HS prediction.
DOI:
10.1609/hcomp.v8i1.7473
HCOMP
Vol. 8 (2020): Proceedings of the Eighth AAAI Conference on Human Computation and Crowdsourcing
ISBN 978-1-57735-848-0