• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Papers from the 1993 AAAI Fall Symposium / fall-1993-04

A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events

March 14, 2023

Download PDF

Authors

Johnathon A. Marshall and Richard K. Alley

DOI:


Abstract:

Visual occlusion events constitute a major source of depth information. We have developed a neural network model that learns to detect and represent depth relations, after a period of exposure to motion sequences containing occlusion and disocclusion events. The network’s learning is governed by a new set of learning and activation rules. The network develops two parallel opponent channels or "chains" of lateral excitatory connections for every resolvable motion trajectory. One channel, the "On" chain or "visible" chain, is activated when a moving stimulus is visible. The other channel, the "Off" chain or "invisible" chain, is activated when a formerly visible stimulus becomes invisible due to occlusion. The On chain carries a predictive modal representation of the visible stimulus. The Off chain carries a persistent, amodal representation that predicts the motion of the invisible stimulus. The new learning rule uses disinhibitory signals emitted from the On chain to trigger learning in the Off chain. The Off chain neurons learn to interact reciprocally with other neurons that indicate the presence of occluders. The interactions let the network predict the disappearance and reappearance of stimuli moving behind occluders, and they let the unexpected disappearance or appearance of stimuli excite the representation of an inferred occluder at that location. Two results that have emerged from this research suggest how visual systems may learn to represent visual depth information. First, a visual system can learn a nonmetric representation of the depth relations arising from occlusion events. Second, parallel opponent On and Off channels that represent both modal and amodal stimuli can also be learned through the same process.

Topics: Fall

Primary Sidebar

HOW TO CITE:

Johnathon A. Marshall and Richard K. Alley A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events Papers from the 1993 AAAI Fall Symposium (1993) .

Johnathon A. Marshall and Richard K. Alley A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events Fall 1993, .

Johnathon A. Marshall and Richard K. Alley (1993). A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events. Papers from the 1993 AAAI Fall Symposium, .

Johnathon A. Marshall and Richard K. Alley. A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events. Papers from the 1993 AAAI Fall Symposium 1993 p..

Johnathon A. Marshall and Richard K. Alley. 1993. A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events. "Papers from the 1993 AAAI Fall Symposium". .

Johnathon A. Marshall and Richard K. Alley. (1993) "A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events", Papers from the 1993 AAAI Fall Symposium, p.

Johnathon A. Marshall and Richard K. Alley, "A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events", Fall, p., 1993.

Johnathon A. Marshall and Richard K. Alley. "A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events". Papers from the 1993 AAAI Fall Symposium, 1993, p..

Johnathon A. Marshall and Richard K. Alley. "A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events". Papers from the 1993 AAAI Fall Symposium, (1993): .

Johnathon A. Marshall and Richard K. Alley. A Self-Organizing Neural Network that Learns to Detect and Represent Visual Depth from Occlusion Events. Fall[Internet]. 1993[cited 2023]; .


ISSN:


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT