Proceedings:
Persistent Assistants: Living and Working with AI
Volume
Issue:
Persistent Assistants: Living and Working with AI
Track:
Contents
Downloads:
Abstract:
For agents deployed in real-world settings, such as businesses, universities and research laboratories, it is critical that agents protect their individual users’ privacy when interacting with others entities. Indeed, privacy is recognized as a key motivating factor in design of several multiagent algorithms, such as distributed constraint optimization (DCOP) algorithms. Unfortunately, rigorous and general quantitative metrics for analysis and comparison of such multiagent algorithms with respect to privacy loss are lacking. This paper takes a key step towards developing a general quantitative model from which one can analyze and generate metrics of privacy loss by introducing the VPS (Valuations of Possible States) framework. VPS is shown to capture various existing measures of privacy created for specific domains of distributed constraint satisfactions problems (DCSPs). The utility of VPS is further illustrated via analysis of DCOP algorithms, when such algorithms are used by personal assistant agents to schedule meetings among users. In addition, VPS allows us to quantitatively evaluate the properties of several privacy metrics generated through qualitative notions. We obtain the unexpected result that decentralization does not automatically guarantee superior protection of privacy.
Spring
Persistent Assistants: Living and Working with AI