Published:
2014-11-05
Proceedings:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 2
Volume
Issue:
Vol. 2 (2014): Second AAAI Conference on Human Computation and Crowdsourcing
Track:
Research Papers
Downloads:
Abstract:
Crowdsourcing is a technique to outsource tasks to a number of workers. Although crowdsourcing has many advantages, it gives rise to the risk that sensitive information may be leaked, which has limited the spread of its popularity. Task instances (data workers receive to process tasks) often contain sensitive information, which can be extracted by workers. For example, in an audio transcription task, an audio file corresponds to an instance, and the content of the audio (e.g., the abstract of a meeting) can be sensitive information. In this paper, we propose a quantitative analysis framework for the instance privacy problem. The proposed framework supplies us performance measures of instance privacy preserving protocols. As a case study, we apply the proposed framework to an instance clipping protocol and analyze the properties of the protocol. The protocol preserves privacy by clipping instances to limit the amount of information workers obtain. The results show that the protocol can balance task performance and instance privacy preservation. They also show that the proposed measure is consistent with standard measures, which validates the proposed measure.
DOI:
10.1609/hcomp.v2i1.13146
HCOMP
Vol. 2 (2014): Second AAAI Conference on Human Computation and Crowdsourcing
ISBN 978-1-57735-682-0