Published:
2015-11-12
Proceedings:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 3
Volume
Issue:
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
Track:
Full Papers
Downloads:
Abstract:
While recent work has shown that a worker’s performance can be more accurately modeled by temporal correlation in task performance, a fundamental challenge remains in the need for expert gold labels to evaluate a worker’s performance. To solve this problem, we explore two methods of utilizing limited gold labels, initial training and periodic updating. Furthermore, we present a novel way of learning a prediction model in the absence of gold labels with uncertaintyaware learning and soft-label updating. Our experiment with a real crowdsourcing dataset demonstrates that periodic updating tends to show better performance than initial training when the number of gold labels are very limited (< 25).
DOI:
10.1609/hcomp.v3i1.13227
HCOMP
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
ISBN 978-1-57735-740-7