• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Papers from the 1995 AAAI Fall Symposium / fall-1995-01

Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations

March 14, 2023

Download PDF

Authors

John R. Koza and David Andre

DOI:


Abstract:

The goal of automatic programming is to create, in an automated way, a computer program that enables a computer to solve a problem. Ideally, an automatic programming system should require that the user pre-specify as little as possible about the problem environment. In particular, it is desirable that the user not be required to prespecify the architecture of the ultimate solution to his problem. The question of how to automatically create the architecture of the overall program in an evolutionary approach to automatic programming, such as genetic programming, has a parallel in the biological world: how new structures and behaviors are created in living things. This corresponds to the question of how new DNA that encodes for a new protein is created in more complex organisms. This chapter describes how the biological theory of gene duplication described in Susumu Ohno’s provocative book, Evolution by Means of Gene Duplication, was brought to bear on the problem of architecture discovery in genetic programming. The resulting biologicallymotivated approach uses six new architecture-altering operations to enable genetic programming to automatically discover the architecture of the solution at the same time as genetic programming is evolving a solution to the problem. Genetic programming with the architecture-altering operations is used to evolve a computer program to classify a given protein segment as being a transmembrane domain or non-transmembrane area of the protein (without biochemical knowledge, such as the hydrophobicity values used in human-written algorithms for this task). The best genetically-evolved program achieved an out-of-sample error rate that was better than that reported for other previously reported human-written algorithms. This is an instance of an automated machine learning algorithm matching human performance on a non-trivial problem.

Topics: Fall

Primary Sidebar

HOW TO CITE:

John R. Koza and David Andre Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations Papers from the 1995 AAAI Fall Symposium (1995) .

John R. Koza and David Andre Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations Fall 1995, .

John R. Koza and David Andre (1995). Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations. Papers from the 1995 AAAI Fall Symposium, .

John R. Koza and David Andre. Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations. Papers from the 1995 AAAI Fall Symposium 1995 p..

John R. Koza and David Andre. 1995. Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations. "Papers from the 1995 AAAI Fall Symposium". .

John R. Koza and David Andre. (1995) "Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations", Papers from the 1995 AAAI Fall Symposium, p.

John R. Koza and David Andre, "Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations", Fall, p., 1995.

John R. Koza and David Andre. "Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations". Papers from the 1995 AAAI Fall Symposium, 1995, p..

John R. Koza and David Andre. "Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations". Papers from the 1995 AAAI Fall Symposium, (1995): .

John R. Koza and David Andre. Evolution of Both the Architecture and the Sequence of Work-Performing Steps of a Computer Program Using Genetic Programming with Architecture-Altering Operations. Fall[Internet]. 1995[cited 2023]; .


ISSN:


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT