• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • News
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

  • Twitter
  • Facebook
  • LinkedIn
Home / Proceedings / Papers from the 2008 AAAI Fall Symposium / fall-2008-04

Bio-Inspired Planning and Reaching in Complex Environments

March 14, 2023

Download PDF

Abstract:

One of the hallmarks of human reaching behavior is the ability to think and generate plans for movements in complex environments. In this paper we model planning to reach for targets in space using a self-organized process of mental rehearsals of movements, and simulate the process using a redundant robot arm that is capable of learning to reach for targets in space while avoiding obstacles. The learning process is inspired by infant motor babbling, and provides self-generated movement commands that activate correlated visual, spatial and motor/proprioceptive information, which are employed to learn forward and inverse kinematic models while moving in obstacle free space. To control the arm in complex environments with obstacles, the inverse model is constrained by the visual influence of the location of obstacles to generate a purely reactive obstacle avoidance controller; while the forward model is utilized in visually planning movements when reactive obstacle avoidance is insufficient. Reach planning utilizes the forward model to recall information in order to mentally rehearse reaches that escape local minima situations that exist in the solution landscape for the purely reactive obstacle avoidance controller and achieve a path around obstacles. Perceptual information, in the form of via-points that are extracted from visual attentional shrouds around obstacles, triggers the recall of corresponding spatial regions from the forward model that were learned during motor babbling. Postures which place the end effector in each region are subsequently recalled from the many-to-one associative maps learned for the forward model, and are evaluated for comfort and distance from the planned via-point locations around the obstacles. The postures are then used by the controller to mentally rehearse arm movements from the initial configuration to the target. Simulations show that the proposed novel controller is successful in planning reaches while avoiding obstacles in environments with complex obstacle configurations. This proposed model is fault tolerant and can handle a wide range of perturbations such as joint locking and the use of tools without experiencing them during learning. The simulation results of our biologically plausible approach highlights its practical utility in applications where the environment is full of obstacles and the robot needs to possess the intelligence to avoid them while performing reaching tasks thereby ensuring safety and reliability.

Authors

Rajan Bhattacharyya

Narayan Srinivasa

Stephen Grossberg

DOI:


Topics: Fall

Primary Sidebar

HOW TO CITE:

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg Bio-Inspired Planning and Reaching in Complex Environments Papers from the 2008 AAAI Fall Symposium (2008) .

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg Bio-Inspired Planning and Reaching in Complex Environments Fall 2008, .

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg (2008). Bio-Inspired Planning and Reaching in Complex Environments. Papers from the 2008 AAAI Fall Symposium, .

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg. Bio-Inspired Planning and Reaching in Complex Environments. Papers from the 2008 AAAI Fall Symposium 2008 p..

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg. 2008. Bio-Inspired Planning and Reaching in Complex Environments. "Papers from the 2008 AAAI Fall Symposium". .

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg. (2008) "Bio-Inspired Planning and Reaching in Complex Environments", Papers from the 2008 AAAI Fall Symposium, p.

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg, "Bio-Inspired Planning and Reaching in Complex Environments", Fall, p., 2008.

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg. "Bio-Inspired Planning and Reaching in Complex Environments". Papers from the 2008 AAAI Fall Symposium, 2008, p..

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg. "Bio-Inspired Planning and Reaching in Complex Environments". Papers from the 2008 AAAI Fall Symposium, (2008): .

Rajan Bhattacharyya||Narayan Srinivasa||Stephen Grossberg. Bio-Inspired Planning and Reaching in Complex Environments. Fall[Internet]. 2008[cited 2023]; .


ISSN:


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT