Proceedings:
No. 9: Technosocial Predictive Analytics
Volume
Issue:
Papers from the 2009 AAAI Spring Symposium
Track:
Contents
Downloads:
Abstract:
This paper presents an analysis of continuous cellular tower data representing five months of movement from 215 randomly sampled subjects in a major urban city. We demonstrate the potential of existing community detection methodologies to identify salient locations based on the network generated by tower transitions. The tower groupings from these unsupervised clustering techniques are subsequently validated using data from Bluetooth beacons placed in the homes of the subjects. We then use these inferred locations as states within several dynamic Bayesian networks to predict each subject's subsequent movements with over 90% accuracy. We also introduce the X-Factor model, a DBN with a latent variable corresponding to abnormal behavior. We conclude with a description of extensions for this model, such as incorporating additional contextual and temporal variables already being logged by the phones.
Spring
Papers from the 2009 AAAI Spring Symposium