• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Human Computation and Crowdsourcing

STEP: A Scalable Testing and Evaluation Platform

February 1, 2023

Download PDF

Authors

Maria Christoforaki,Panagiotis Ipeirotis

New York University,New York University


DOI:

10.1609/hcomp.v2i1.13159


Abstract:

The emergence of online crowdsourcing sites, online work platforms, and evenMassive Open Online Courses (MOOCs), has created an increasing need for reliably evaluating the skills of the participating users in a scalable way.Many platforms already allow users to take online tests and verify their skills, but the existing approaches face many problems. First of all, cheating is very common in online testing without supervision, as the test questions often "leak" and become easily available online together with the answers.Second, technical skills, such as programming, require the tests to be frequently updated in order to reflect the current state-of-the-art. Third,there is very limited evaluation of the tests themselves, and how effectively they measure the skill that the users are tested for. In this paper, we present a Scalable Testing and Evaluation Platform (STEP),that allows continuous generation and evaluation of test questions. STEP leverages already available content, on Question Answering sites such as StackOverflow and re-purposes these questions to generate tests. The system utilizes a crowdsourcing component for the editing of the questions, while it uses automated techniques for identifying promising QA threads that can be successfully re-purposed for testing. This continuous question generation decreases the impact of cheating and also creates questions that are closer to the real problems that the skill holder is expected to solve in real life.STEP also leverages the use of Item Response Theory to evaluate the quality of the questions. We also use external signals about the quality of the workers.These identify the questions that have the strongest predictive ability in distinguishing workers that have the potential to succeed in the online job marketplaces. Existing approaches contrast in using only internal consistency metrics to evaluate the questions. Finally, our system employs an automatic "leakage detector" that queries the Internet to identify leaked versions of our questions. We then mark these questions as "practice only," effectively removing them from the pool of questions used for evaluation. Our experimental evaluation shows that our system generates questions of comparable or higher quality compared to existing tests, with a cost of approximately 3-5 dollars per question, which is lower than the cost of licensing questions from existing test banks.

Topics: HCOMP

Primary Sidebar

HOW TO CITE:

Maria Christoforaki,Panagiotis Ipeirotis STEP: A Scalable Testing and Evaluation Platform Proceedings of the AAAI Conference on Human Computation and Crowdsourcing (2014) 41-49.

Maria Christoforaki,Panagiotis Ipeirotis STEP: A Scalable Testing and Evaluation Platform HCOMP 2014, 41-49.

Maria Christoforaki,Panagiotis Ipeirotis (2014). STEP: A Scalable Testing and Evaluation Platform. Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 41-49.

Maria Christoforaki,Panagiotis Ipeirotis. STEP: A Scalable Testing and Evaluation Platform. Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 2014 p.41-49.

Maria Christoforaki,Panagiotis Ipeirotis. 2014. STEP: A Scalable Testing and Evaluation Platform. "Proceedings of the AAAI Conference on Human Computation and Crowdsourcing". 41-49.

Maria Christoforaki,Panagiotis Ipeirotis. (2014) "STEP: A Scalable Testing and Evaluation Platform", Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, p.41-49

Maria Christoforaki,Panagiotis Ipeirotis, "STEP: A Scalable Testing and Evaluation Platform", HCOMP, p.41-49, 2014.

Maria Christoforaki,Panagiotis Ipeirotis. "STEP: A Scalable Testing and Evaluation Platform". Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 2014, p.41-49.

Maria Christoforaki,Panagiotis Ipeirotis. "STEP: A Scalable Testing and Evaluation Platform". Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, (2014): 41-49.

Maria Christoforaki,Panagiotis Ipeirotis. STEP: A Scalable Testing and Evaluation Platform. HCOMP[Internet]. 2014[cited 2023]; 41-49.


ISSN: 2769-1349


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT