Abstract:
Video games often populate their in-game world with numerous ambient non-playable characters. Manually crafting interesting behaviors for such characters can be prohibitively expensive. As scripted AI gets re-used across multiple characters, they can appear overly similar, shallow and generally uninteresting for the player to interact with. In this paper we propose to evolve interesting behaviors in a simulated evolutionary environment. Since only some evolution runs may give rise to such behaviors, we propose to train deep neural networks to detect such behaviors. The paper presents work in progress in this direction.
DOI:
10.1609/aiide.v13i2.12981