Published:
2015-11-12
Proceedings:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 3
Volume
Issue:
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
Track:
Works in Progress
Downloads:
Abstract:
Plan synthesis often requires complete domain models and initial states as input. In many real world applications, it is difficult to build domain models and provide complete initial state beforehand. In this paper we propose to turn to the crowd for help before planning. We assume there are annotators available to provide information needed for building domain models and initial states. However, there might be a substantial amount of discrepancy within the inputs from the crowd. It is thus challenging to address the planning problem with possibly noisy information provided by the crowd. We address the problem by two phases. We first build a set of Human Intelligence Tasks (HITs), and collect values from the crowd. We then estimate the actual values of variables and feed the values to a planner to solve the problem.
DOI:
10.1609/hcomp.v3i1.13262
HCOMP
Vol. 3 (2015): Third AAAI Conference on Human Computation and Crowdsourcing
ISBN 978-1-57735-740-7