Proceedings:
Book One
Volume
Issue:
Proceedings of the International Conference on Automated Planning and Scheduling, 30
Track:
Main Track
Downloads:
Abstract:
Location-based services rely heavily on efficient methods that search for relevant points-of-interest (POIs) close to a given location. A k nearest neighbors (kNN) query is one such example that finds k closest POIs from an agent's location. While most existing techniques focus on finding nearby POIs for a single agent, many applications require POIs that are close to multiple agents. In this paper, we study a natural extension of the kNN query for multiple agents, namely, the Aggregate k Nearest Neighbors (AkNN) query. An AkNN query retrieves k POIs with the smallest aggregate distances where the aggregate distance of a POI is obtained by aggregating its distances from the multiple agents (e.g., sum of its distances from each agent). Existing search heuristics are designed for a single agent and do not work well for multiple agents. We propose a novel data structure COLT (Compacted Object-Landmark Tree) to address this gap by enabling efficient hierarchical graph traversal. We then utilize COLT for a wide range of aggregate functions to efficiently answer AkNN queries. In our experiments on real-world and synthetic data sets, our techniques significantly improve query performance, typically outperforming existing approaches by more than an order of magnitude in almost all settings.
DOI:
10.1609/icaps.v30i1.6639
ICAPS
Proceedings of the International Conference on Automated Planning and Scheduling, 30