
The goal of programming by demonstration (PBD) is to
enable ordinary end users to create programs without needing
to learn the arcane details of programming languages, but sim-
ply by demonstrating what their program should do. If PBD
were successful, the vast population of nonprogrammer com-
puter users would be able to take control of their computing
experience and create programs to automate routine tasks,
develop applications for their specific needs, and manipulate
information in service of their goals.1 However, PBD has yet to
achieve widespread adoption, partly because the problem is
extremely difficult. How can any system successfully guess the
user’s intended program out of an infinite space of possible pro-
grams?

PBD is a natural match for artificial intelligence, particularly
machine learning. By observing the actions taken by the user
(training examples), the system can create a program (learned
model) that is able to automate the same task in the future (pre-
dict future behavior). However, unlike most machine-learning
systems that can rely on hundreds or thousands of training
examples, users are rarely willing to provide more than a hand-
ful of examples from which the system can generalize. This con-
straint makes the design of machine-learning algorithms for
PBD extremely challenging: they must learn accurately from an
absurdly small number of user-provided training examples.

However, when designing machine-learning algorithms for
use in a user-facing system, accuracy is not the only important
factor. Researchers’ experience designing and deploying
machine-learning-based PBD systems reveals several factors that
prevent users from wanting to use such systems. This paper
presents some of the lessons researchers have learned about
making AI systems usable.

Case Studies: Three Systems
This article presents case studies of three programming by
demonstration systems that employ varying amounts of
machine learning to intelligently predict user behavior.

SMARTedit (Lau et al. 2003) is a text editor that uses PBD to

Articles

WINTER 2009 65Copyright © 2009, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Why Programming by
Demonstration Systems Fail:

Lessons Learned for Usable AI

Tessa Lau

n Programming by demonstration systems
have long attempted to make it possible for peo-
ple to program computers without writing code.
However, while these systems have resulted in
many publications in AI venues, none of the
technologies have yet achieved widespread
adoption. Usability remains a critical barrier to
their success. On the basis of lessons learned
from three different programming by demon-
stration systems, we present a set of guidelines
to consider when designing usable AI-based sys-
tems.

automate repetitive text-editing tasks (see figure 1).
For example, when reformatting text copied and
pasted from the web into a document, one can
demonstrate how to reformat the first line or two of
text, and the system learns how to reformat the
remaining lines. The system is based on a novel
machine-learning algorithm called version space
algebra, which uses multiple examples incremental-
ly to refine its hypotheses as to the user’s intended
actions.

SMARTedit was later reimplemented within the
context of a word processor product (based on
OpenOffice), though that feature was never
released. During the development process, my col-
leagues and I solicited user feedback on the result-
ing system and learned that poor usability was the
key barrier to acceptance.

Sheepdog (Lau et al. 2004) is a PBD system for
learning to automate Windows-based system
administration tasks based on traces of experts per-
forming those tasks. For example, based on several
demonstrations of experts fixing the configuration
of a Windows laptop in different network environ-
ments (static IP, dynamic IP, different DNS servers),
the system produced a procedure that could apply
the correct settings, no matter what the initial con-
figuration was. The system uses an extension to
input-output hidden Markov models (Oblinger et
al. 2005) to model the procedure as a probabilistic
finite state machine whose transitions depend on
features derived from the information currently
displayed on the screen.

CoScripter (Little et al. 2007) is a PBD system for
capturing and sharing scripts to automate com-
mon web tasks. CoScripter can be used both to
automate repetitive tasks, as well as share instruc-
tions for performing a task with other users. For
example, based on watching a user search for real
estate using a housing search site, CoScripter auto-
matically creates a script that can be shared with
other users to replay the same search. The system
uses a collection of heuristics to record the user’s
actions as a script. A script is represented as
human-readable text containing a bulleted list of

steps; users can modify the program and change its
behavior simply by editing the text. A smart pars-
er interprets each script step in order to execute the
instruction relative to the current web page.

Design Guidelines for Usable AI
During the course of developing these systems,
researchers conducted user studies and collected
informal user feedback about each system’s usabil-
ity. This section summarizes some of the observa-
tions my colleagues and I made.

Detect failure and fail gracefully. SMARTedit’s
learning algorithm does not have a graceful way to
handle noise in training examples. For example, if
the user makes a mistake while providing a train-
ing example, or if the user’s intent is not express-
ible within the system, the system collapses the
version space and makes no predictions. The only
action possible is to start over and create a new
macro. Users who do not have a deep understand-
ing of the workings of the algorithm, and who just
expect the system to magically work, would be jus-
tifiably confused in this situation.

CoScripter’s parser does a heuristic parse of each
textual step; because there is no formal syntax for
steps, the heuristics could incorrectly predict the
wrong action to take. When the system is used to
automate a multistep task, one wrong prediction
in the middle of the process usually leads the entire
script astray. When this happens, users have
observed that users are confused because the sys-
tem says it has completed the script successfully,
even though it diverged from the correct path mid-
way through the script and did not actually com-
plete the desired task. Few users monitor the sys-
tem’s behavior closely enough to detect when it
has not done what it said it was going to do.

Make it easy to correct the system. Sheepdog’s
learning system takes as input a set of execution
traces and produces a learned model. If the learned
model fails to make the correct predictions, the
only way to correct the system is to generate a new
execution trace and retrain the system on the aug-
mented set of traces. Similarly, SMARTedit’s users
complained that they wanted to be able directly to
modify the generated hypotheses (for example,
“set the font size to 12”) without having to retrain
the system with additional examples. One chal-
lenge for machine learning is the development of
algorithms whose models can be easily corrected
by users without the need for retraining.2

Encourage trust by presenting a model users can
understand. The plain-text script representation
used in CoScripter is a deliberate design chosen to
let users read the instructions and trust that the
system will not perform any unexpected actions.
The scripting language is fairly close to the lan-
guage people already use for browsing the web,

Articles

66 AI MAGAZINE

Figure 1. The SMARTedit User Interface

unlike the language used in SMARTed-
it where users complained about
arcane instructions such as “set the
CharWeight to 1” (make the text
bold). SMARTedit users also thought a
higher-level description such as
“delete all hyperlinks” would be more
understandable than a series of lower
level editing commands; generating
such a summary description is a chal-
lenge for learning algorithms.

Sheepdog’s procedure model is a
black-box hidden Markov model, and
the only way to see what a procedure
would do is to run it. The system
administrators who were the target
audience for Sheepdog were uncom-
fortable with the idea that a procedure
they created and sent to a client might
accidentally wipe the client’s hard
disk. A prediction accuracy of 99 per-
cent might seem to be good enough
for most systems; however, if that
remaining 1 percent could cause
destructive behavior, users will quick-
ly lose faith in the system.3

Enable partial automation. The nam-
ing of the Sheepdog system suggests
that the users of the system are
“sheep” who blindly follow the rec-
ommendations of the system. Yet
users often have knowledge about
their task that is not known to the sys-
tem, and they often want to take
advantage of partial automation while
incorporating their own customiza-
tions. Early versions of Sheepdog
assumed that all actions users per-
formed were in service of the auto-
mated task, and would fail if (for
example) an instant message popped
up unexpectedly in the middle of the
automation. Intelligent systems
should be able to cope with interrup-
tions and allow users to modify the
automated system’s behavior without
derailing the automation.4

Consider the bottom-line value of
automation. The benefits of automa-
tion must be weighed against the cost
of using the automation. For PBD sys-
tems the cost includes invoking the
system, teaching it the correct proce-
dure, and supervising its progress.

For example, SMARTedit was origi-
nally implemented as a standalone
text editor, rather than integrated into
existing editors. The cost of switching
to SMARTedit for the sake of a quick

text edit was perceived as too high; for
simple editing tasks, users felt they
could complete the task more quickly
by hand. With CoScripter, several
users have complained that finding
the right script to automate a repeti-
tive task took longer than simply
doing the task by hand. In both cases,
automation was considered worth-
while by users only for long or tedious
tasks, even though it could have been
worthwhile for a broader range of
tasks, if its costs had been reduced.
Designers should take users’ pain
points into account when judging
where automation is likely to be
accepted.5

Discussion
and Conclusions

Based on researchers’ experience with
several machine-learning-based pro-
gramming by demonstration systems,
I have characterized many of the
usability issues that serve as barriers to
widespread adoption of such systems.
Ultimately the solution will require
not only technical improvements to
the underlying algorithms (for exam-
ple, Chen and Weld [2008]) but also
improved interaction designs that take
into account the strengths and weak-
nesses of AI-based solutions. Building
truly usable AI systems will require
contributions from both the AI and
human-computer interaction (HCI)
communities, working together in
concert.6

Notes
1. In the terms of Lieberman’s theme article
on usability benefits (Lieberman 2009) PBD
is one of the ways in which AI can help
realize the principle that interfaces should
accomplish interactions in ways that make
efficient user of user input.

2. These first three examples illustrate some
of the many forms that can be taken by
failures of system intelligence, their conse-
quences, and the procedures by which
users compensate for them (compare the
usability side-effects theme article by Jame-
son, in this issue).

3. These two examples illustrate how a lack
of comprehensibility can lead to a lack of
controllability (compare the usability side-
effects theme article). In this case, what
needs to be comprehensible is not the
machine learning that forms the core of

Articles

WINTER 2009 67

the system but rather the product of the
learning.

4. This partial automation can be seen as
another way of giving the user some meas-
ure of control—though here what the user
needs is not so much an understanding of
the learned procedure as opportunities to
influence the course of its execution.

5. These two examples illustrate two very
different forms of the usability side effect of
the user’s having to make disproportionate
effort in order to get the intelligent func-
tionality to work properly.

6. The concluding remarks reflect the
“binocular view” of the design of intelli-
gent interactive systems discussed in the
Introduction.

References
Chen, J., and Weld, D. S. 2008. Recovering
from Errors during Programming by
Demonstration. In Proceedings of the Inter-
national Conference on Intelligent User Inter-
faces (IUI). New York: Association for Com-
puting Machinery.

Lau, T.; Bergman, L.; Castelli, V.; Oblinger,
D. 2004. Sheepdog: Learning Procedures
for Technical Support. In Proceedings of the
International Conference on Intelligent User
Interfaces (IUI), 327–329. New York: Associ-
ation for Computing Machinery.

Lau, T.; Wolfman, S.; Domingos, P.; and
Weld, D. S. 2003. Programming by Demon-
stration Using Version Space Algebra.
Machine Learning 53(1–2).

Lieberman, H. User Interface Goals, AI
Opportunities. AI Magazine 30(4).

Little, G.; Lau, T.; Cypher, A.; Lin, J.; Haber,
E.; Kandogan, E. 2007. Koala: Capture,
Share, Automate, Personalize Business
Processes on the Web. In Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems (CHI’07). New York:
Association for Computing Machinery.

Oblinger, D.; Castelli, V.; Lau, T.; Bergman,
L. 2005. Similarity-Based Alignment and
Generalization. In Proceedings of the 16th
European Conference on Machine Learning.
Berlin: Springer.

Tessa Lau is a research staff manager at IBM’s
Almaden Research Center in San Jose, CA.
Lau’s research integrates techniques from AI
and human-computer interaction to build
systems that enhance human productivity
and creativity; areas of interest include pro-
gramming by demonstration, collaboration,
and social software. She has served on organ-
izing and program committees for major AI
and HCI conferences and journals. She also
serves on the board of CRA-W, the CRA com-
mittee on the status of women in comput-
ing. Lau holds a PhD in computer science
from the University of Washington.

