Al Magazine Volume 13 Number 2 (1992) (© AAAI)
Articles

Robot Planning

Drew McDermott

Research on planning for robots is in such a state of flux that there is dis-
agreement about what planning is and whether it is necessary. We can take
planning to be the optimization and debugging of a robot’s program by
reasoning about possible courses of execution. It is necessary to the extent
that fragments of robot programs are combined at run time. There are several
strands of research in the field; I survey six: (1) attempts to avoid planning;
(2) the design of flexible plan notations; (3) theories of time-constrained plan-
ning; (4) planning by projecting and repairing faulty plans; (5) motion plan-
ning; and (6) the learning of optimal behaviors from reinforcements. More
research is needed on formal semantics for robot plans. However, we are
already beginning to see how to mesh plan execution with plan generation
and learning.

Copyright ©1992, AAAI/$2.00
SUMMER 1992 55

Articles

The plan is
that part of
the robot’s
program
whose future
execution the
robot reasons
about
explicitly.

56 Al MAGAZINE

e used to know what planning was. It
Wwas the automatic generation of an

action sequence to bring about a
desired state of affairs. Given a goal such as
“All the green blocks must be off the table,” a
classical planner was supposed to generate a
plan such as “Put block 33 on block 12, put
block 16 on block 33, put block 45 on block
16,” where blocks 16, 33, and 45 were the
only green blocks on the table.

Nowadays nobody works on this problem
any more. As stated, the problem turned out
to be too hard and too easy. It was too hard
because it was intractable. (As stated, the
problem is so open ended that it has to be
intractable, but even when severely simplified,
it is still pretty bad [Chapman 1987; Gupta
and Nau 1991].) It was too easy because
action sequences are not adequate as a repre-
sentation of a real robot’s program. As often
happens in Al, we are now trying to redefine
the problem or do away with it.

The temptation to do away with it, at least
for the time being, is strong because planning
the behavior of an organism seems to depend
crucially on a model of what the organism
can do, and our models of robot behavior are
still crude. Perhaps we should build robots
that have their own need to plan before we
think about robot planning again. I say more
about this line of thought later. For now, let’s
just make the obvious assumption that there
are robots whose actions need to be planned
to avoid inefficiencies and disasters. A robot
that pursued its own immediate agenda with-
out regard to the plans of its makers would be
of limited value. Presumably, we will want to
tell our robots to do things without having to
completely reprogram them. As soon as we
tell a robot to do two things at once, it will
have to reason about how to combine the two
directives.

All robots have programs in the sense that
their behavior is under the control of a for-
mally representable object. This statement has
been true since Grey Walter’s (1950) turtles; I
leave aside the question of whether it is true
of robots controlled by neural nets. Virtually
all other robots are under the control of
formal objects that we can call their programs,
even though in some cases, the object is
compiled down to hardware.

This observation might seem trivial, but I
have three reasons for making it:

First, there is an odd current of mysticism
in the Al-robotics community. Some practi-
tioners like to pretend that their machines are
“being in the world” or “living a life” rather
than being controlled by something as anal
retentive as a program. I want to put distance

between my views and theirs.

Second, some robot programmers call
attention to the fact that their robots continu-
ally react to the current sensory input rather
than follow a list of instructions without heed
to the world around them. The specifications
of how to react are nonetheless still a program.

Third, there is a tendency in the field to
praise hardware and condemn software. Hard-
ware is speedy and reactive; software spends
its time swapping and garbage collecting. This
preference is a temporary aberration, I believe,
based on a misunderstanding about program-
ming. As in the rest of computer science,
robotics can’t escape the advantages of first
expressing behaviors as textual objects and
later worrying about mapping them to hard-
ware.

Once we focus on the robot’s program, we
realize that the robot’s intentions and capabil-
ities are its program. To change how the robot
reacts to a situation, you change its formal
specifications. This claim is not strictly true.
In reality, the development of a robot system
proceeds as follows:

Sensors

Mission —> —> Program
Effectors

We identify what we want the robot for (for
example, to keep the rat population down at
the warehouse), choose sensors and effectors
we think are adequate, and then devise pro-
grams to drive them. During program devel-
opment, we might realize that the sensors and
effectors are inadequate or too complex, but
in general, it is inevitable that hardware will
vary more slowly than software. (That’s why
we have software.) Hence, to a first approxi-
mation, we can pretend that the hardware
stays fixed, and all the robot’s behavior is a
function of the software. If the robot moves
toward light, it’s because some part of its con-
troller connects the light sensor to the motion
effector; without this programmed connection,
there would be no tropism.

Robot programming presents several pecu-
liarities (compare Lyons and Arbib [1989]):

First, programs must provide real-time
response to changing environmental condi-
tions. This response must be based on a
model of how the world reacts to the robot,
often stated in control-theoretic terms.

Second, programs are inherently concurrent.
Sensors and effectors run in parallel. Many
tasks demand only intermittent attention.

Third, some of the objects manipulated by
a program lie outside the computer. The pro-
gram cannot simply bind a variable to such
an object but must spend time tracking and
reacquiring it.

What Is Robot Planning?

Now that we’ve explained robot programming,
where does planning fit in? When we started,
a plan was a sequence of actions, such as
“First put block 33 on block 12, then put block
45 on block 12.” If we ask how this sequence
of actions fits into the world of programmed
robots, the answer is clear: It is just a simple
form of program. It's not plausible as a com-
plete program. If it is to actually control a real
robot, we must implement “put” as a subrou-
tine that actually moves blocks. This subroutine
might or might not be part of the plan itself.

Here I must address a technical point. If we
insist that plans actually control behavior,
then the plan is usually just a small fragment
of a much larger system for controlling
behavior, including the put routine but also
including the garbage collector, the graphic
user interface, and the planner itself. How
then do we tell when a robot actually does
any planning? How do we find the plans?
Surely, it’s a trivialization to use the label plan
for an arbitrary piece of the robot’s software.

Here’s the answer: The plan is that part of
the robot’s program whose future execution
the robot reasons about explicitly. There
might be some residual philosophical issues
about what counts as explicit reasoning, but
we can, I hope, take a commonsense position
on this matter.

A robot that learns by debugging parts of
its program is an interesting special case.
Here, the system reasons about how to
improve the program it just executed, but the
reasoning is about how to generalize the cur-
rent lesson to future similar circumstances.
This situation counts as reasoning about the
future execution of the program, so the part
of the program that is improved by learning
is the robot’s plan.

Thus, we have a definition of robot plan.
The definition of robot planning is a natural
corollary: Robot planning is the automatic gen-
eration, debugging, or optimization of robot
plans. This list of three operations is merely a
gloss on the phrase “explicit reasoning about
future execution.” There might be other oper-
ations that should be included.

This approach is tidy, but it has the unfor-
tunate consequence of having defined plan-
ning to be a form of automatic programming
of robots, and automatic programming has
not been a hugely successful endeavor. In
fact, its evolution parallels that of robot plan-
ning in a way: It has progressed from elegant,
intractable formulations to more task-orient-
ed and modest techniques.

Another issue raised by my formulation is

that it is more difficult to state the general
form of a planning problem. The classical
format is as descriptions of an initial situation
and a goal situation. In robot planning, we
sometimes want to devise a plan that keeps a
certain state true, devise the most efficient
plan for a certain task, react to a type of recur-
ring world state, or some combination of all
these things. Perhaps the most general formu-
lation of the planning problem is as follows:

Given an abstract plan P and a descrip-
tion of the current situation, find an exe-
cutable realization Q that maximizes
some objective function V.

For example, a scheduling problem might be
thought of as transforming (IN-SOME-ORDER A
A, ... A,) into a particular ordering of A; with
the object of minimizing total expected time
to completion. A classical planning problem
might be thought of as transforming the
abstract plan (ACHIEVE p) into a sequence of
actions such that p is true when the sequence
is executed, starting with the current situation.

No existing planner can accept plans stated
in this extremely general form, and it is not
likely that such a general planner will ever be
written. However, it is useful to keep the
framework in mind when comparing the dif-
ferent approaches to planning that are sur-
veyed in what follows.

A Survey of Robot Planners

My goal in this section is to give you an
impression of the current state of the field,
including solid results and dreamy aspira-
tions. You can be the judge of the ratio of
the mass of the former to the volume of the
latter. Another goal is to try to fit much of the
current work in this field into a single nota-
tional framework to make comparison easier
among a bewildering variety of approaches.

Much of the work on robot planning
involves simulated robots because experimen-
tation with real robots is difficult. Even
researchers who use the real thing must
inevitably do most of their work on software
imitations. We hope that the results we get
are not warped too much by having been
generated in this context, but we know they
are warped to some extent. Keep this point in
mind.

Minimalism

I start with attempts to treat robotic behavior
as a matter of stimuli and responses. Behavior
at a given moment is to be controlled by the
situation at the moment. Elaborate mecha-
nisms for building world models and making

Articles

SUMMER 1992 57

Articles

...planning
is... a matter
of deliberat-
ing about the
future to
generate a
program...

58 AI MAGAZINE

inferences from them are to be avoided. This
approach is associated most prominently
with the research group of Brooks (1986) at
the Massachusetts Institute of Technology. It
also includes the work on situated automata
by Kaelbling and Rosenschein (1990) and
Kaelbling (1987) and video game players by
Agre and Chapman (1987).

For example, here is the specification in
Brooks’s notation for a module to make a
robot run away from a disturbing force (Con-
nell [1990]):

(defmodule runaway

:inputs (force)
:outputs (command)
:states
((nil (event-dispatch force decide))
(decide (conditional-dispatch
(significant-force-p force)
runaway
nil))
(runaway
(output command (follow-
force force))
nil))) .

This description is of a finite-state machine
with three states: nil, decide, and runaway.
The machine waits in state nil until an event
is detected on the input line named force. It
then enters state decide, where it checks
whether the force is large enough to cause a
branch to state runaway or a return to the
quiescent state nil. In state runaway, an
output is issued to the command output line.

Notations such as these do not make it
impossible to write programs that maintain
complicated world models, but they discour-
age the practice. The idea is that a complex
world model is just an opportunity for error.
If the robot must instead track sensory data
moment by moment, small errors cannot
accumulate; they get washed away by new
data. A slogan of this movement is, Use the
world as its own best model.

Some of the robots designed with these
notations do cute things, but so do robots
designed using Pascal. Because my topic is
robot planning, the relevant question here is,
To what extent do the notations support
planning? They could in two ways: (1) they
could be used to write planners and plan
interpreters or (2) they could be notations for
plans to be manipulated by a planner. The
two alternatives are not necessarily exclusive
(Nilsson 1988).

An example of the first approach is the
module in Chapman’s (1990) soNjA program,
which is responsible for deciding which way
to navigate around obstacles. SONJA is a reac-
tive program whose task is to play a video

game of the usual sort, involving fighting
with monsters and ghosts. It does almost no
planning, but we can occasionally see glim-
mers. In figure 1, we see a simplified version
of a typical soNjA navigation problem. The
hero, on the right, is trying to get to the trea-
sure, on the left, but there is an obstacle in
between. To find the shortest path, the system
uses visual routines to color the obstacle, find
its convex hull, and find and mark the cen-
troid of the convex hull. It also marks the
hero (sonja) and the treasure. If the angle
shown in figure 2 is positive, then the plan-
ner chooses a counterclockwise path around
the obstacle; otherwise, it chooses a clockwise
path.

If this approach is planning, then it’s as
minimalist as you can get. The ingredients
are there: Two alternative courses of action
are compared with respect to their conse-
quences (a rough estimate of the travel
times). The action with the best conse-
quences is then chosen. What’s interesting is
that one can do even this level of reasoning
with the visual-marking hardware Chapman
provides.

Thus, in the case of soNjA, plans form only
a tiny and evanescent piece of the program.
SONJA plots a course, takes the first step, and
thinks again, regenerating the plan if need be
(or a variant).

The structure of the sonjA navigator raises
another issue. Suppose an agent has con-
structed a plan and begins to execute it. What
is the optimal point at which to discard the
plan and reconstruct it? If computation costs
nothing, then the plan should be discarded as
soon as it begins to be executed because the
agent can only have gained information as
time passes, which the new plan will reflect.
Under such circumstances, the optimal strate-
gy is to plan, take a step, replan, take a step,
and so forth. It might seem as though the
conditions under which this strategy makes
sense would be rare but consider an agent
that has a processor dedicated to planning.
Such an agent should adopt a strategy of
installing a new plan whenever the special-
ized processor generates one. (I am neglecting
the cost of plan switching, the option of
gathering more information, and the possibil-
ity that giving the planner more time allows
it to find a better plan. See the sections Theo-
ries of Time-Constrained Planning and
Transformational Planning).

The point is that planning is not a matter
of generating a program and then becoming a
slave to it. It is a matter of deliberating about
the future to generate a program, which need
not be executed in its entirety. It might seem

Treasure

\

Sonja

Figure 1. Navigation in soNjA (Chapman 1990).

odd to generate an entire program and then
use only an initial segment of it, but the agent
is going to have to discard the plan eventual-
ly, and the generation of the entire plan legit-
imizes the initial segment by showing a
plausible way for it to continue. A chess-play-
ing program illustrates the point well: Such a
program explores a tree of board positions,
which could be thought of as containing an
elaborate plan for how to respond to the
opponent’s possible moves. However, the pro-
gram just finds the best first move and never
actually attempts to remember the whole tree
of board positions. It is always more cost
effective to regenerate the tree after receiving
the opponent’s next move than to keep the
old version around. The same principle applies
to planning in general, except when planning
is too expensive, or too little information has
come in since the plan was revised.

The other way planning can interact with
minimalism is for a planner to generate a
minimalist robot plan, starting from a more
abstract specification. The most cited example
of such a system is Kaelbling’s (1988) Garprs
program. It takes as a specification a set of
states of affairs to be achieved or maintained
and compiles them down into programs in a
minimalist formalism called rex (Kaelbling
and Wilson 1988). For our purposes,! we can
take a REX program to be of the form

(WHENEVER CLOCK-TICK*
(TRY-ONE (cond; action,)
(cond,, actiony)

'(c'o'ndn action,)))) ,

where one action whose cond is satisfied is
selected each time TRY-ONE is executed. Each
cond; and act; is implemented as a simple
combinational logic circuit connected to sen-
sors or effectors. CLOCK-TICK® is a condition set
by an internal clock that alternates between
true and false over an interval long enough to
allow all the condition and action circuits to
settle (that is, not long). In parallel, all the
conditions are checked, and one action corre-
sponding to a true condition is executed. I
call such a plan synchronous, using an analogy
with logic circuitry. By contrast, an asyn-
chronous plan is one whose actions are not
yoked to a global cycle in this way but that
poll the world when necessary (or get inter-
rupted by incoming sensory information). A
robot’s program can have both synchronous
and asynchronous components, even within
its plan.

One nice feature of the (synchronous) REX
formalism is that it permits a natural defini-
tion of conjoining and disjoining programs.
To disjoin two programs, we simply concate-
nate their lists of condition-action pairs. Con-
junction is slightly more complicated.

Articles

SUMMER 1992 59

Articles

60 AI MAGAZINE

L Center of Mass

of Convex Hull

QA

GO LEFT IF ANGLE >0 COUNTERCLOCKWISE

Figure 2. sonjA’s Decision Procedure.

Wherever program 1 specifies a; as a response
to ¢y, and the program specifies a, as a
response to ¢, the conjunction recommends
the merge of a; and a, as the response to
¢10c,, provided a; and a, can be merged. Two
actions can be merged if it makes sense to
send their effector messages simultaneously
(for example, “Right-wheel motor on” and
“Front sonar on” can be merged, but “Right-
wheel motor on” and “Right-wheel motor
off” cannot).

The fact that REX programs compose is
important to the definition of Kaelbling’s
(1988) Gcarps compiler, which transforms pro-
grams of the form (AND (ACHIEVE p) (ACHIEVE q))
into executable programs of the sort described.
It does so by walking through the goal speci-
fication and applying transformation rules.
To compile an AND, Gapps simply applies the
definition just discussed. To compile an
ACHIEVE, it makes use of rules of the form

(DEFGOALR ([ACHIEVE | MAINTAIN] state)

subgoal) ,
which means that any action that leads to the
subgoal will lead to the achievement or main-
tenance of the state. (These ideas are based
on the situated automata theory of Rosen-
schein [1989].) A collection of DEFGOALRs is a
plan library, which spells out how to attack all
the complex goals the agent knows about. We
see this idea again later. Kaelbling (1988)
proves that the plans produced by Gaprrs actu-

ally do lead to the goals discussed, but this
guarantee is weaker than it sounds. Given an
impossible problem, Garps can detect the
impossibility, but it can also go into an infi-
nite loop and never find a solution, or it can
produce a plan that loops forever, indefinitely
postponing achieving the impossible goal.
The DEFGOALR library is not enough of a
formal theory of how the world reacts to the
robot’s actions for Garrs to do any better.

Plan Interpreters

There is a trade-off between the expressivity
and the manipulability of a plan notation.
The notations we looked at in the section on
minimalism are at one end of the spectrum.
They are sharply constrained to be guaran-
teed easy to manipulate. In this section, I
look at plan notations that allow more com-
plex plans to be stated more easily. I use the
term plan interpreter for the module that
executes a plan written in one of these nota-
tions. There is no real need to draw a contrast
here between interpretation and compilation,
but thinking in terms of an interpreter makes
it easier to experiment with more complex
language features (Firby 1987, 1989; Georgeff
and Lansky 1986, 1987; Simmons 1990,
1991; Lyons, Hendricks, and Mehta 1991).
Oddly enough, one of the most controver-
sial features is a program counter. In a plan
interpreter, it is the most natural thing in the

world to write a plan of the form (SEQ step; . . .
step,), which means to do each of the steps in
order. Indeed, classical plans were purely of
this form. The danger with stqQ is that it
encourages hiding a world model in an overly
simple place—in the counter that tracks which
step to do next. It is often the case that the
next step is the right thing to do only if previ-
ous steps have had their intended effects. The
plan should really check to see if the effects
really happened, and seQ makes it easy to
omit the check. A better representation for a
two-step plan whose second step depends on
the first achieving P might be

(WITH-POLICY (WHENEVER (NOT P) step;)

(WAIT-FOR P step,)) ,
where (WITH-POLICY p a) means to do a and p
in parallel until a succeeds, giving p a higher
priority.

This plan skeleton is only suggestive. In
reality, we might have to spend some resources
checking the truth of P, especially if it
involves objects outside the robot (see later
discussion). In addition, we have to make
sure that if step; cannot actually achieve P,
then the robot eventually gives up. With
these gaps filled, the wiTH-POLICY version is
more robust and responsive than the version
using SEQ.

Still, there are times when sEQ is handy.
Sometimes it is silly to check for the effects of
a series of actions after every step. The robot
might want to look for an object, move its
hand to the location found, close the gripper,
and then check to see if it grasped anything.
If not, it should move away and repeat the
whole sequence. Sometimes the order among
plan steps arises for reasons of efficiency
rather than correctness. There is no local con-
dition to check between steps; instead, there
is a global rationale for doing the steps in this
order rather than some other.

In the rest of this article, I use a textual,
Lisp-like notation for plans and avoid graphic
representations. The reason is simple: Graphic
representations become clumsy as soon as we
move beyond certain familiar types of plans.
Hence, I avoid the standard task network or
procedural network and emphasize that plans
are programs. I reserve the term fask to refer
to the execution of a particular piece of a
plan. It is only in plans with no loops or sub-
routine calls that each piece of the plan will
correspond to exactly one task.

Now, what other features does a plan nota-
tion need? Basically, a plan notation needs
everything that a robot programming language
needs plus features to support reasoning
about the plan and the state of its execution.
These features include loops, conditionals,

Articles

There is a trade-off between the expressivity
and the manipulability of a plan notation.

and procedures; concurrency (the ability to
read more than one sensor; run more than
one more effector; and, in general, work on
more than one task at once); bound variables;
explicit references to tasks (to allow explicit
relations among them); constraints as explicit
parts of plans (policies); and annotations
regarding the purposes of the steps. A con-
straint is an active part of the plan, which acts
to repair violations at run time (for example,
“If speed exceeds 20 KPH, slow down”). An
annotation is a note to the planner about the
purpose of a piece of the plan (for example,
“Keep china you're carrying intact”). It might
or might not be checkable at run time.

The need for bound variables requires fur-
ther discussion. As I pointed out earlier, a
robot needs to be able to refer to objects out-
side itself. That is, it needs to be able to bind
variables that apparently refer to objects in
the world:

(LET ((X (FIND power-outlet)))

(PLUG-INTO X)) .

We apparently succeed in binding the local
variable X to an object in the world. We then
pass this object to the rLuG-INTO plan. This
process might look absurd, but the classical
plan (stQ (Move B C (Move B C)) more or less
assumed that A, B, and C denoted objects in
this way. To back away from this unrealistic
assumption, we must make clear that vari-
ables can at best be bound to descriptions of
objects, that is, to information sufficient to
manipulate and reacquire them. I call such a
description an effective designator. The best a
robot can do, in general, is to match a newly
perceived object with a description of an
object it expects to perceive and jump to the
conclusion that they are the same. For exam-
ple, in a juggling robot, there is a continual
process of reading the sensors and assigning
the resulting data to one puck or the other to
fit a smooth trajectory.

In a planning context, we focus on reason-
ing about plans that acquire and manipulate
objects in this way. The fundamental infer-
ence here is an operation we can call EQUATE,
which takes two designators and declares that
they refer to the same object. For example,

SUMMER 1992 61

Articles

True plan-
ning requires
generating,
optimizing,
or, at least,
choosing
among plans.

62 Al MAGAZINE

suppose we have a plan that requires the
robot to pick up an object whenever it is
dropped. Enforcing this invariant depends on
the ability to find the object. The plan for
restoring the invariant might look like the
following:

(DEF-PLAN FIND-AND-PICK-UP (DESIGNATOR)

(LET((NEW (LOOK-FOR DESIGNATORY)))

; NEW is a list of things that look like

; DESIGNATOR

(If (= (LENGTH NEW) 1)

(SEQ (EQUATE DESIGNATOR (CAR NEW))
(PICK-UP DESIGNATOR))
(FAIL))) .

At the point where the plan equates the two
designators, any belief about one is taken to
be true of the other. Hence, based on the
assumption that LOOK-FOR returned enough
information to allow rick-upr to work, this
information is now attached to DESIGNATOR,
making it effective in the sense previously
described. If LoOk-FOR finds no object of the
correct sort—or too many—the plan fails.
Failure means that the planner must step in
and try to find a way to work around the
problem. I say more about this particular sort
of failure later.

I go into this scenario at such length
because there has been a lot of controversy
and confusion about the role of names in
plans. Agre and Chapman (1990) have gone
so far as to suggest that there is a need to
rethink the entire institution of representa-
tion. In fact, a more modest conclusion is
appropriate: Tarskian semantics has nothing
to say about how descriptions of objects in
plans relate to the objects in the world. Fortu-
nately, the full story is not complicated.

In the plan shown, we made use of an
explicit EQUATE operator. Another approach
was explored by Firby (1989). He viewed the
process of object tracking as an autonomous
filter between the planner and the sensors.
Every time a set of objects was noticed or
examined, this filter would perform the most
restrictive match it could manage between
the newly sensed objects and objects with
descriptions stored in memory. The plan
interpreter tracked the status of such matches
and would discard information as actions
were performed. A key idea was the expecta-
tion set, or the set of objects that the robot
expected to see again in some class of situa-
tions. In such a situation, the robot would
equate a perceived object with an expected
object as soon as the perceived object matched
one expected object better than all the rest.

In what follows, I introduce other nota-
tional features as we need them. If you get
the impression that the notation can be

turned into an actual plan notation, that’s
because it has been. See McDermott (1991)
for a complete description of the reactive
plan language.

Theories of Time-Constrained Planning

We have looked at systems that execute plans.
True planning requires generating, optimiz-
ing, or, at least, choosing among plans.

Classically, planning was supposed to operate
as follows: The planner is given a description
of a world state, for example, a description of
a stack of blocks. It then generates a sequence
of actions that bring this world state about,
starting from the current state. Unfortunately,
this problem tends to be too hard, especially
the general versions. If we take an arbitrary
logical formula as the goal specification, then
it is not even decidable whether the goal state
is consistent, let alone achievable.

However, if we specialize the problem,
then the technique of nonlinear planning
becomes useful. Suppose that the initial state
of the world is known completely, and the
goal-state description is just a set of ground
literals. In figure 3, we see a graphic depiction
of a typical planning problem: Get object A
on B, and change its color to black. Suppose
further that actions require preconditions;
otherwise, their effects do not depend on
what’s true before they begin. In this case, we
can consider a plan to be (almost) a tree
whose nodes are actions and whose edges are
goals. An edge joining two action nodes A,
and A, means that the goal labeling the edge
is achieved by A; as a precondition for A,.
The actions are to be executed in postorder,
that is, children before parents. The root of
the tree is labeled END and corresponds to an
artificial no-op at the end of the plan. The
edges into the END node correspond to the
goals originally given to the system. The
planner can produce a plan by starting with a
degenerate tree consisting solely of an END
node that connects to one edge for each
given goal. An edge corresponding to an as-
yet-unsatisfied goal has a dummy goal node
on its lower end, which needs to be replaced
by a legal action. Planning occurs by repeat-
edly replacing a goal node with an action
node, which, in turn, connects to goal edges
and nodes corresponding to its precondi-
tions. The process ends when all goal edges
are labeled with goals true in the initial state.
All such edges can be completed with an arti-
ficial BEGIN action. An example is shown in
figure 4. (The action (TO-TABLE X y) moves x
from y to the table; (FROM-TABLE X y) moves x
from the table to y.)

INITIAL

Given Goals: (On A B)
(Color A Black)

GOAL

Figure 3. Simple Planning Problem.

To convert the graph of figure 4 back to a
piece of text, we use the PARTIAL-ORDER cOn-
struct. Each action node (except BEGIN and
END) is given a label using the notation (:TAG
label action). The resulting code fragments are
bundled as follows:

(PARTIAL-ORDER ((:TAG STEP1 (TO-TABLE C A))

(:TAG STEP2 (FROM-TABLE A B))

(:TAG STEP3 (PAINT A BLACK)))

(:ORDER STEP1 STEP2)) .

The locution (PARTIAL-ORDER (-steps-) -orderings-)
means to do the steps as constrained by the
orderings but with no other constraints. An
alternative representation would be to choose
an arbitrary total ordering that extends the
partial ordering specified by the plan graph.
This representation would be preferable if we
did not want the plan executor to worry
about concurrency.

Of course, it’s not really this easy to generate
plans, even with our stringent assumptions
about the representation of actions and plans.
My tree picture is too simple; in general, an
action can achieve more than one goal as pre-
conditions for one or more later actions, so
the plan graph is really a directed acyclic
graph (DAG). The figure displays this phe-
nomenon for the artificial BEGIN action, but it
can occur at any node in the plan graph. If
one node in the tree deletes a state protected
elsewhere, then the possibility exists of a pro-
tection violation in which the deleted state is
executed between A; and A, of the protec-
tion. The planner must insert extra edges to
ensure that this execution can’t happen. (An
edge in the plan DAG is traditionally called a
protection because it records that the achieved

state must persist—be protected—until it is
needed.)

All these considerations lead to choice
points and, hence, a search process (schema-
tized in figure 5), which is exponential in the
worst case (Chapman 1987). The nodes in the
search space are partial plans, DAGs with
some number of unsatisfied goal nodes and
threatened protections. The planner moves
through the plan space using these operators
(Tate 1977; Charniak and McDermott 1985):

1. For some protection of G across A; —> A,
and potential violator A,, add an edge A,,— A;.

2. For some protection of G across A; —> A,
and potential violator A,, add the edge A, —> A,

3. Replace a goal node with a new action
node plus goal edges and nodes for its pre-
conditions.

Articles

4. Replace a goal
node with an existing
action node that
achieves this goal.

Recently, McAllester
and Rosenblitt (1991)
showed that if these
rules are codified, the
result is a search algo-
rithm that is complete
in that it is guaranteed
to find every plan and
systematic in that it
never looks at the
same plan twice.

The algorithm really
becomes practical only

(ON A B)

(CLEAR A)

(FROM-TABLE A B)

END

COLOR A BLACK)

BEGIN

(PAINT A BLACK)

(CLEAR B) (SPRAYER BLACK)
(TO-TABLE C A)
(CLEAR C) (ONC A\

when it is combined
with techniques for

Figure 4. Plans as Action Graphs.

SUMMER 1992

63

Articles

Initial “Null* Plan -

Reorder ste7

-
\ Identify steps L
-
-

EXECUTABLE PLAN

Add step

|

A

C O

64 Al MAGAZINE

Figure 5. Planning Search Space.

postponing the choice of objects (for exam-
ple, a destination for object C in figure 3) by
allowing the objects to be represented as
unknowns when first introduced into a plan.
Constraints accumulate for the unknowns
until particular objects can be chosen (Suss-
man 1975; McAllester and Rosenblitt 1991).
Nonlinear planning is effective to the
degree that plan steps do not interact, thus
making it possible to think about different
sections of the plan tree in isolation. We
remove one source of interaction by requiring
that actions’ effects depend only on their
arguments. The planner can then treat these
effects as stable when reasoning about their
impacts on other actions. This requirement
might seem impossible to meet, but we can
often satisfy it with the trick of including an
action’s context in its arguments. For exam-
ple, in the domain of figure 3, we might on
first analysis want to include an action (to-
TABLE x), which moves object x to the table.
However, this action has a context-dependent
effect: It creates empty space on top of the
object that used to hold x. We can patch
around this problem by using the action (to-
TABLE x y), where y is the object holding x
before the move. This action always creates
empty space on y. When the planner intro-

duces an instance of it in the plan, it must
choose a y; here is where the ability to post-
pone such choices comes in handy.

The amount of literature on heuristic
extensions to this basic idea is large. See
Hendler, Tate, and Drummond (1990) for a
survey of this literature and Allen, Hendler,
and Tate (1990) for a sample. See Wilkins
(1988) for a description of a large implement-
ed system.

The term nonlinear planning has been
used to refer to the technique of searching
through a space of plans represented as
DAGs. Unfortunately, it has also been used in
at least two other ways.2 Rich (1983) uses it
to refer to any algorithm that can find a plan
for achieving pU p,0 ... p,, that does not con-
sist of a sequence of n subplans, each of
which achieves one of the p; but leaves the
previously achieved conjuncts undisturbed.3
Another rather different use of the term
assumes that the planner is given a library of
plans at the outset and not just a description
of the effects of each type of action. Given a
set of goals, the planner retrieves plans for
accomplishing them and then runs these
plans, in general, concurrently.4 (Kaelbling’s
[1988] DEFGOALR fits this paradigm.) If the
plans interfere with each other, then the
agent must cope with the resulting problems,
either by foreseeing and forestalling them or
by correcting them after they happen. For
example (figure 6), a robot might have the
goal of removing dirt from a room by repeat-
edly vacuuming it up and emptying the
vacuum cleaner bag, and it might have a con-
temporaneous goal of recharging its batteries
whenever they need it. These two plans can
simply be run simultaneously. The second is
normally dormant, but when active, it takes
priority and can cause the robot to make a
detour with a full bag of dirt. If there is a
reason why this idea is bad, the planner
could predict when the batteries would need
recharging and could schedule recharging
trips during periods when the bag is empty. (I
say more about such bug projection in the
section on transformational planning.)

The technique of Nau, Yang, and Hendler
(1990) is in the category of techniques for
managing plan libraries. Suppose that the
planner has derived a plan of the form

(SEQ (DO-ONE-OF Py Py ... P1mp
(DO-ONE-OF Py Py ... Pay,

(DO-ONE-OF Pyyy1 Py oo Py 1)) -

That is, it has determined that any P;; accom-
plishes step i. The only remaining question is
which combination of the step plans is the

Remove dirt from room

while keeping batteries charged

(WITH-POLICY

(WHENEVER BAG-FULL
(EMPTY-BAG))
(PUSH-VACUUM-AROUND))

while keeping batteries charged

(WITH-POLICY

(WHENEVER BATTERY-LOW

(RECHARGE))

(WITH-POLICY
(WHENEVER BAG-FULL

(PUSH-VACUUM-AROUND)))

(EMPTY-BAG))

Figure 6. Plan Reduction Using Libraries.

least expensive. It might happen that, say, P,
and P,, are a particularly felicitous combina-
tion because their setup costs can be shared.
Suppose that the cost sharing can be modeled
in terms of the abilities of the steps for each
plan Pj; to merge, and suppose these gains
from merging are all known. That is, for each
pair of action types, we store a new action
type, if there is one, that accomplishes both
of them more cheaply. The most obvious
example is the pair <4, A>, which can be
merged to A in many cases. Two plans, P and
Py, can be merged by performing all steps
consistent with ordering constraints. The
algorithm of Nau, Yang, and Hendler (1990)
finds optimal plan choices by doing a best-
first search through choices of which P;; to
include at step i. It makes the choices in order
of increasing i, choosing at each stage the P;
that minimizes the estimated total plan cost.
The performance of this kind of algorithm
depends on the heuristic cost estimator,
which must predict all possible savings from
merges to be made later. Empirical results

(figure 7) show that the estimator of Nau, Yang,
and Hendler (1990) works well in practice.

To this point, we have assumed that plan-
ning should be fast but only because of the
general principle that all computations
should be fast. In the case of robot planning,
there is a special urgency because the robot
must react to events quickly. Once the need
for a plan is perceived, there is usually a
bounded amount of time after which there is
no point in continuing to search for a plan.
For example (Dean and Boddy 1988), an
object might be coming down a conveyor
belt, and a grasping plan has to be computed
while the object is still within reach.

Why should more time help? It might be
that the planning algorithm needs a certain
amount of time to run. Giving it more time
allows it a better chance of finding an answer
before time runs out. A more pleasing possi-
bility is that the algorithm satisfies the princi-
ple of continuously available output (Norman
and Bobrow 1975): It returns a plan no matter
how little time it is given but returns a better

Articles

SUMMER 1992 65

Articles

500
Number
of States
Searched 4qq Without

heuristic
300 A
200
With heuristic
100
0 T T T
0 10 20 30 40
Problem Size

Figure 7. Cost on Random Problems of Algorithm of
Nau, Yang, and Hendler (1989).

66 Al MAGAZINE

plan if given more time. Such an algorithm is
called an anytime algorithm (Dean and Boddy
1988). (See also Horvitz, Cooper, and Hecker-
man [1989]; and Russell and Wefald [1991].)

Suppose a robot has a model of how much
better its plan will get for each time unit.
Suppose also that it has a model of how fast
the value of a plan deteriorates as its time of
delivery gets later. (A hard deadline is a special
case where the deterioration happens all at
once.) For examples, see figures 8a and 8b. If
we take the product of the two graphs, we
get a graph that plots the overall value of
deliberation (figure 8c). The graph peaks at
the optimal time to deliberate, past which the
enhanced value of the plan found is offset by
its staleness. The planner should plan for this
many time units, then execute the plan it has
found.

This idea is based on a few assumptions.
The first assumption is that the time required
to decide how much time to spend deliberat-
ing is negligible. An exponential algorithm
that finds the absolute best amount of time
to spend planning is obviously useless. We
make this assumption true by considering
only fast algorithms for metadeliberation.

The second assumption is that the only
cost of deliberation is the loss of effectiveness
because of delay. This assumption is plausible
if deliberation requires only central process-
ing unit cycles. We can impose this assump-

15
1255
10

a) 75

Figure 8. The Value of Deliberation.
(a) Plan goodness as a function of planning time. (b)

Plan usefulness as a function of real time. (c) Overall
value of planning time.

tion by requiring all overt robot acts to be
planned. The best plan might be of the form
Seek information — > plan some more ,
whose value is the expected value of the best
plan obtained after getting the information.
The third assumption is that it is possible
to quantify the expected gain from further
computation. Figure 9 shows an example
where the quantification is possible (Boddy
and Dean 1989): Suppose the robot is expected
to visit a long list of locations in classical trav-
eling salesman style. The Lin and Kernighan
(1973) algorithm works by mutating a legal
but suboptimal tour. The more time it is given
to mutate, the better the result gets, and we
can fit a curve to the degree of improvement.
This curve is shown in figure 9a. However,
every unit of time spent deliberating must be
added to the overall execution time, so a

15
12.5

10
a) 7.5 -\-\-\—\‘_‘_‘_-
5

25

6
5
4
b) .
2
1 4

15

o _—]

Figure 9. Performance of an Incremental
Traveling Salesman Algorithm.

Path travel time (a), delay (b), and total time to com-
pletion (c) as functions of planning time.

delay penalty is associated with further plan-
ning, as shown in figure 9b. The sum of the
two curves, shown in figure 9c, is the estimated
total execution time as a function of delibera-
tion time. The deliberation time that mini-
mizes total execution time is the one to pick.
Unfortunately, the assumption that we can
model the benefits of deliberation is often
unrealistic. In fact, further planning can make
a plan worse (Nau 1982), although it normal-
ly makes it better to some degree. Figure 10
shows a case that exemplifies the limitations
of anytime planning. Figure 10a is a graph of
plan improvement as a function of plan time.
It might seem odd that taking two units of
planning time could make the plan worse
than taking one unit; why couldn’t the plan-

Figure 10. Typical Time-Constrained
Planning Scenario.
(a) Plan goodness as a function of planning time. (b)
Plan value as a function of real time. (c) Overall value
of planning time.

ner just remember the plan it had at time 1
and use it instead of the inferior one it just
generated? The answer is that the planner
does not always have an accurate model of
how good its plans are. The plan after time 1
might have a bug, which it repairs at time 2
(see Transformational Planning). Unknown
to the planner, this repair has introduced a
worse bug, which requires two more units of
plan time to detect and correct. Meanwhile, as
shown in figure 10b, there is a deadline loom-
ing, after which it is too late to execute any
plan at all. In such cases, the best we can do is
run the planning algorithm until a deadline
looms, then install the current plan and hope
for the best. As figure 10c illustrates, this
tactic does not necessarily produce the best

Articles

SUMMER 1992 67

Articles

Unfortunately
... we do not
have a general
theory of plan
revision as
opposed to
plan
generation.

68 Al MAGAZINE

The china breaks
It was rattled
Traveled along a bumpy road at speed
> 20 KPH
Highway 24 is bumpy
Traveled along Highway 24
Speed = 40 KPH
Not padded

Figure 11. Explanation of Time Bug.

plan. However, it should, on average, be
better than not planning at all (or the plan-
ner should be decommissioned).

Transformational Planning

Many of the planning methods we have
examined have in common that they operate
on fully formed plans rather than generate a
plan from scratch each time. This feature is
almost a necessity in a domain where plan-
ning involves modifying ongoing behavior.
Unfortunately, however, we do not have a
general theory of plan revision as opposed to
plan generation.

Let’s look at an example of why revision is
such a good idea. Suppose a robot has to
carry out several tasks, including (1) hold
onto some fragile china and protect it from
breaking until ordered to relinquish it and (2)
monitor a nuclear test at location B that takes
place at noon. The plan for the second task
requires starting for the test site at 9 A.M. The
plan for the first task requires picking up the
china and avoiding moving anywhere with-
out making sure it is held. Unfortunately, the
road from here to the nuclear test observation
post is bumpy, so if both these plans are exe-
cuted simultaneously, the china is likely to
get broken. Fortunately, the plan can be
repaired in one of the following ways: (1)
start for the test site earlier, and avoid going
fast enough to break the china; (2) pack the
china in a more protective package; or (3)
travel by a smoother road. These are all revi-
sions of the plan. That is, they are incompati-
ble with the first draft of the plan. The
alternative to revising a plan is backtracking
to a relevant decision point in the plan space
and trying something else. In figure 5, the
nodes in the search space were intended to be
partial plans, which became further instanti-
ated and constrained by planning operations.
In principle, any partial plan could be com-

pleted in several ways, and a plan operator
simply discarded some of these completions.
If a blind alley was encountered, the planner
could switch to a different part of the search
space where the correct possibility was still
open and try something else. However, in
general, this space of refinement decisions
will not be represented explicitly, especially if
the current version of the plan was produced
by composing several large entries in a plan
library. It is potentially simpler and more effi-
cient just to provide methods for pushing a
plan in the right direction, without having to
find a representation in the plan space of an
abstract plan that included the correct solu-
tion as a possible refinement (Collins 1987).
The pitfall is that in revising a plan, it might
get worse or cease to solve the original prob-
lem at all.

One way to cope with such pitfalls was
devised by Hammond (1988, 1990) and Sim-
mons (1988a, 1988b). I abstract their method
a little bit and adapt it to the notational
framework I have been using. The planner
starts with an abstract plan (including pieces
such as “Monitor a nuclear test at location B
and time 12 p.M.”). It uses a plan library to
reduce it to executable steps (such as “Wait
until 9 A.M., then travel along Highway 24 to
the test site. Stay there until noon.”). Such
plan fragments are likely to work, perhaps are
even guaranteed to work, if executed in isola-
tion. However, when they are combined, vari-
ous interactions can occur. To detect them,
the planner projects the plan, yielding an
execution scenario that specifies what will
happen. (In general, you might get several
scenarios. Compare Hanks [1990a, 1990b]
and Drummond and Bresina [1990].) At this
point, the planner tries to prove that the plan
projection represents a successful execution
of the original abstract plan. If it fails, then it
instead produces an explanation of what
went wrong in the form of a proof tree whose
conclusion is of the form “Wrong thing W
occurs” (for example, “The china breaks.”).
The proof tree might be as shown in figure
11. To fix the problem, the planner looks for
leaves of the tree that can be changed. It has
no way of changing the bumpiness of High-
way 24, but it can change “Traveled along
Highway 24” by taking another route; it can
change “Speed = 40” by reducing the speed to
20; it can change “Not padded” by introduc-
ing a padding step. These repairs are exactly
the ones that I listed before. (The speed repair
introduces a new bug—that the robot arrives
late to the test—which is repaired by starting
earlier.) The repairs are affected by adding
steps and changing argument values.

'Ideally... the robot executes the plan while the planner thinks

about improving it...

The work of Hammond and especially Sim-
mons goes a long way toward a general
theory of plan revision. For robot planning,
we need to think about transformations on
arbitrary plans, including those with subrou-
tines and loops. Furthermore, we need to
broaden the class of transformations to
include optimizations as well as bug repairs.
Suppose that a plan critic wants to propose an
optimized schedule for a set of errands to be
undertaken by a mobile robot. This revision
is not naturally construed as a bug repair.
Instead, the critic must walk through the cur-
rent plan, make a list of all the locations to be
visited, then alter the plan so that the locations
are visited in an efficient order. The PARTIAL-
ORDER construct we introduced in connection
with nonlinear planning can express the
required ordering constraints when used in
conjunction with the :TAG notation for refer-
ring to pieces of a plan.

Another such transformation is the classic
protection-violation removal (see previous
section). Suppose one step of a plan requires a
fact to be true over an interval, and projection
shows that another step can make it false,
thereby violating a protection. The standard
way to eliminate this possibility is to install
ordering constraints to ensure that the viola-
tor comes before or after the protection inter-
val. This transformation is easy to express in
this language.

Other transformations might require more
drastic program revision. Consider the famous
bomb in the toilet problem (McDermott
1987). The planner is given two objects, one
of which is a bomb. The plan “Put the bomb
in the toilet” would save the robot, but it
can’t be executed: The bomb is not an effective
designator (see Plan Interpreters), so it can’t
be used to give commands to the gripper to
pick up the bomb. Classical refinement plan-
ning provides ways of verifying that the plan
“Put both objects in the toilet” solves the
problem but no way of generating the plan.

From a transformational perspective, we
can see how such plans can be generated and
why humans need the ability to do so. The
planner could try projecting the plan

(LET ((B (LOOK-FOR-ONE Bomb-shaped object)))

;; B is now an effective designator for

gripper manipulation

(DISARM B))
and encounter the bug “More than one object
expected to meet description.” We can cata-
log possible repairs just as for other kinds of
bugs: (1) find an earlier point in the plan
where there was an effective designator for
the object, and insert a step to marKk it distinc-
tively; (2) find an earlier point in the plan
where there was an effective designator, and
insert steps to clear the area of distracting
objects; or (3) alter the plan after the attempt-
ed acquisition of the object so that it applies
to every object meeting the description. The
first two repairs are not applicable in this situ-
ation, but the third is and suggests disarming
both objects. In other words, the plan should
be revised as follows:

(LET ((BL (LOOK-FOR bomb-shaped objects)))

;; At this point BL is a list of effective
designators
(Loopr FOR ((B v BL))

(DISARM B))) .

Of course, this transformation is not fool-
proof, but then revisions never are. That’s
why the projection step is so crucial—to test
by simulation whether the revised plan actu-
ally works. I should also point out that this
discussion is a little speculative; no one has
implemented this particular transformation.

Let us now turn to the matter of how plan
revision fits in with the need to do planning
under time constraints. There are two issues:
How fast is transformational planning? How
can it be combined with plan execution?

The individual steps of transformational
planning are not expensive. Plan projection is
considerably faster than plan execution. (It
depends on processor speed, not the speed of
effector motions.) If the planner needs to gen-
erate several scenarios, the time taken grows,
but if less time is available, the number of
projections can be trimmed. Plan critics typi-
cally scan a portion of a plan near a bug or, at
most, work through a projection, counting
things such as resources. Hence, each critic is
unlikely to do a huge amount of computation.
Perhaps I am hand waving here, but it doesn’t
matter; the real tar pit is in searching the
space of transformed plans. After every revi-
sion, the planner must reproject and recri-

Articles

SUMMER 1992 69

Articles

Destination

70 Al MAGAZINE

Figure 12. Motion Planning.

tique the plan. Some revisions introduce
more bugs than they fix, so the planner must
backtrack in revision space. The success of the
whole paradigm turns on two assumptions:

First, plans are already almost correct (Suss-
man 1975). By constructing plans out of large,
robust pieces, we don’t have to worry that
without an intricate debugging process, they
will collapse.

Second, the planning process will have
paid for itself when the planner finds a better
plan than it started with but not necessarily
the optimal plan. When this situation happens,
it can switch to the improved version.

I know of one case history in which these
assumptions were observed empirically to be
correct—the transformational planner of
Zweben, Deal, and Gargan (1990). This plan-
ner is based on an algorithm for rescheduling
large-scale plans after revision. The problem
is to take a correct schedule for a large set of
activities, make a few changes (for example,
add some tasks, change some time windows,
delete some resources), and find a correct
schedule for the new problem. The algorithm
treats temporal constraints among steps dif-
ferently from other constraints. Constraint
violations on start and end times are handled

by rippling shifts through the set of tasks,
using a technique owed to Ow, Smith, and
Thiriez (1988). Other constraint violations are
then handled by specialized repair strategies.
These strategies are not guaranteed to improve
matters, but the algorithm can decide (ran-
domly) to accept an attempted repair that
makes the plan worse in the usual simulated-
annealing way (Kirkpatrick, Gelatt, and Vecci
1983). The algorithm has not actually been
applied in the context of robot planning, but
there is no reason it couldn’t be.

The second question I raised earlier was,
How can transformational planning be com-
bined with plan execution? In Zweben, Deal,
and Gargan’s program, as soon as the planner
has produced an improved version of the plan,
it can tell the interpreter to begin executing
it. In this case, the interpreter is a human
organization that can see how to make the
transition to the new plan. It might be con-
siderably harder to tell a robot to forget its
current plan and start work on a new one.

In many cases, it is possible to duck this
issue by assuming that the agent does noth-
ing while it plans, then switches to executing
the plan. The robot standing by the conveyor
belt has no other goals but to plan a grasp as
it waits for the target object to get closer. It
might be a good strategy to have a robot
always react to a new planning problem by
discarding its current plan and getting itself
into a quiescent state, to pull over to the side
of the road as it were.

I see several problems with this view. First,
it costs resources to get into a quiescent state,
and some planning problems do not require
spending them. Second, it often requires
planning to choose a quiescent state and
then get to it. An autonomous airplane might
have to decide whether to circle while plan-
ning or find an airport to land at, and if it
picks the airport option, it would have to
plan how to get there. Third, even quiescent
states require behavior. A robot will have to
continue to manage power consumption and
might have to go looking for fuel in the
midst of planning.

Ideally, what we want to happen is that the
robot executes the plan while the planner
thinks about improving it (McDermott 1990).
The planner should be active whenever (1) a
new command comes from the robot’s super-
visor to be added to the current plan, (2) an
old command fails, or (3) the planner still has
tricks for improving the plan. When the
planner has a new plan version, it should
instruct the plan interpreter to discard the
old one and begin executing the new. It
might sound as if this approach could cause

the agent to burst into flames, but if plans are
written robustly enough, they should be able
to cope. For example, a plan for transporting
an object from one place to another must be
prepared to discover that the object is already
halfway there (or already in the robot’s grip-
per) (compare Schoppers [1987]).

The only thing left out of this sketch is how
to cope with a world that is changing too
rapidly for the planner to keep up. Suppose
the planner takes five minutes to plot a series
of errands but meanwhile is cruising along a
highway at 100 KPH. The plan it comes up
with might apply to the situation at the
beginning of the planning process but be use-
less by the time it is generated (for example,
the plan might say “Get off the highway at
Exit 10,” and the agent might have passed
Exit 10 four minutes ago). One possible solu-
tion is to track all assumptions about the
world state as the planner makes them. If the
agent knows that the world has diverged from
these assumptions (based on information it
has been acquiring as it goes), it can abort the
planning process and then attempt to get into
a more quiescent state, try giving the planner
fewer time resources, or both.

In the old days, the topic of combining
planning and execution was called execution
monitoring. The idea was that the run-time
interpreter would track how well the world
was conforming to the expectations in the
plan and would react to deviations by replan-
ning. This idea is still around but in a
modified form. Now that plans themselves
continually track the world, we can assume
that they explicitly fail when they detect
excessive deviations. We do not require a
general-purpose theory that tells how to track
the progress of an arbitrary plan. What we do
require is a theory of how to switch to a new
plan when the planner produces one.

Robot Motion Planning

When real robotics people (as opposed to Al
people) use the word planning, they usually
mean motion planning, the computation of
trajectories for robots to follow. Actually, this
point of view makes sense—a robot doesn’t
do much more than move. The classical
approach to motion planning (Lozano-Perez
1983; Brooks 1982; Latombe 1991) is to start
with a complete description of the environ-
ment, generate a trajectory through it, then
issue commands to the robot wheels or arm
so that it moves along this trajectory. The tra-
jectory can be thought of as the plan: “Move
while staying close to this curve” (figure 12).
This whole approach is surprisingly prob-
lematic. The main problem is that the space

Articles

BEST PATH

Side Trip

A\ 5

Figure 13. Sticking to a Path Can Be a Bad Idea (Payton 1990).

the path goes through is best thought of as
configuration space, the space of possible joint
positions of the robot, rather than physical
space. Configuration space has as many dimen-
sions as degrees of freedom in the system,
and the path-planning problem becomes
intractable as the degrees of freedom grow
(Canny 1988). I more or less ignore this issue
and focus on large-scale path planning for
mobile robots, where the dimensionality
remains a comfortable two.

Another problem is that the method appears
to require accurate knowledge of the physical
layout before execution begins. Obviously,
such knowledge is hard to come by in most
circumstances.

A third problem is that the method breaks
the problem into two chunks: Find a path;
stay near it. The path is generated using geo-
metric criteria and might not be suitable for a
real robot to follow. If it has sharp corners, it
will be almost impossible for the robot to
track it accurately. Of course, it’s usually
unnecessary to track it accurately, but there
will be some tight squeezes.

In fact, there are times when it is inappro-
priate to track the path at all. If a robot is exe-
cuting several plans concurrently, then it
might interrupt its main travel task to make a
side trip or attend to a high-priority interrupt.
When the interruption is over, there’s no par-
ticular reason to return to the previous path
(figure 13). Instead, you want to start again
toward the destination from the current
point. One way to represent the information
required is as a field of vectors pointing the
correct travel direction at every point in space
(Payton 1990), as in figure 14. The vector
field is the plan; think of it as follows:

SUMMER 1992 71

Articles

L
L L
5 A

N

4
.<
N

After side trip, follow local vector

L L~ ~
L

A/

£

V50

N ya
<
<

£

Figure 14. Vector Field Shows Travel Directions.

72 Al MAGAZINE

(WHENEVER ROBOT-MOVED*
(LET (((X Y) (CURRENT-LOCATION)))
(MOVE Direction = (VECTOR-
FIELD X Y)))) .
If this plan is interrupted, it goes in whatever
direction VECTOR-FIELD specifies when it
resumes.

This idea is attractive at first glance, but it
is not without problems. It requires comput-
ing the appropriate travel direction at all
points in advance, whether they will be used
or not, which seems excessive. (This feature is
reminiscent of universal plans [Schoppers
1987].) Such precomputation is meaningless
if there are inaccuracies in the robot’s map.
The stored values are not retrievable unless
the robot is able to accurately compute its
X,Y location at run time. (In some contexts,
it is reasonable to assume that it can do so.)

Fortunately, we can fix the idea simply by
allowing the robot to compute the path
dynamically. Miller and Slack (1991) designed
and implemented such a scheme. The robot’s
destination generates a vector field that is
then modified by vector fields associated with
obstacles (figure 15). Obstacles are recognized
by transforming range data into elevation
data (compare Thorpe et al. [1988]). A global
map is gradually constructed by locating the
obstacles in a global coordinate system. The
robot must know its location fairly well with
respect to this system to maneuver around
obstacles it can’t see and (in most cases) to
know the direction of its destination. Locally
visible obstacles can be dealt with directly. At
any instant, a set of obstacles is selected as

relevant to path planning. A decision is made
to go around each obstacle either clockwise
or counterclockwise. This decision sets up a
local vector field around each relevant obsta-
cle. The fields are then combined to generate
a motion direction for the robot at the current
point. The computation is fast enough that it
can be repeated before every robot movement.

This approach is known in the robot trade
as the artificial potential field approach to motion
planning because you can think of the vectors
as sums of repulsions from obstacles and
attractions toward goals. However, the phrase
potential field is subject to several interpreta-
tions. Some researchers use it as a synonym
for vector field even if the field does not have
an associated potential (Miller and Slack’s
does not). Some use it as a device for generating
paths, which are then tracked in the tradi-
tional way (Khatib 1986). Some use it literally
as a potential field, treating the resulting arti-
ficial force as a virtual control input for the
robot (Koditschek 1987). For any interpreta-
tion, the approach has difficulties (Koren and
Borenstein 1991). The main problem is that
because of local minima in the potential field
corresponding to the vectors, it doesn’t really
address the path-planning problem at all
without substantial modification. A cul-de-
sac near the destination looks like a reason-
ably attractive place to be for just about any
potential field approach.>

Clearly, what’s needed is a model of how
a robot (1) builds a world map as it moves
through the world, (2) uses this map for long-
range path planning (in spite of its incom-
pleteness), (3) makes use of local cues (as in
figure 15) to adjust as it goes, and (4) switches
to an entirely different path whenever
unknown areas turn out to be full of obsta-
cles. The first job is beyond the scope of this
article (see Kuipers and Byun [1988]; Thorpe
et al. [1988]; Mataric [1990]; and McDermott
[1992]). The algorithm for building the world
map is presumably not part of the plan but is
an autonomous black box as far as the plan-
ner is concerned. (The act of exploring to
feed this black box with information might
be planned, however.) We can picture the
planner generating an alternative path when-
ever the world map changes. If the new path
is substantially different from the old, it can
become the new plan, as discussed in Trans-
formational Planning.

Learning

To this point, we have focused on the case
where the planner has time to reason about
alternative futures before guiding itself
toward one of them. Such reasoning is likely

to be error prone, but the errors are often not
fatal. Hence, the robot has an opportunity to
learn from its mistakes and try something dif-
ferent the next time it’s in a similar situation.
All the usual learning techniques are adapt-
able to the robot setting. Mitchell (1990) dis-
cusses explanation-based generalization for
robots; Hammond (1988) discusses case-based
reasoning. However, for practical purposes,
the most plausible application of learning is
to learning the statistics of the domain: what
to do under what circumstances or what is
likely to happen under what circumstances,
which is closely related. Furthermore, it is
implausible to assume that the learner has
a much richer perceptual model than the
behaver. Therefore, what gets learned is likely
to be a mapping from low-level perceptions
to recommended low-level actions or to pre-
dictions of future low-level perceptions.

If it were not for such constraints on
modeling, we could draw a parallel between
transformational planning and learning.
Transformational planning occurs at plan
time when the planner anticipates and fixes
a bug arising from a novel combination of
plans. Learning occurs after a run when a bug
in a stored plan has been experienced, and
the fix gets written back into the plan. The
only problem with this idea is that it depends
on being able to generate good patches for
bugs when the agent lacks either a good
theory of the world or a good perceptual
model of the world. If a wall-following plan
goes astray, it is unlikely that the agent will
be able to generate a good enough explana-
tion to propose a fix to the plan. (The human
plan writer creates such explanations all the
time, of course.)

Hence, we fall back on a strategy of compil-
ing statistics regarding the conditions under
which things work or don’t work without
trying to explain these statistics. We can
assume our plans look like the following:

(Loor ; (Asynchronous version)

(TRY-ONE (cond actiony)
(cond, action,)

(cond,, action,,))) .

The learning problem is to adjust each
cond; so that it is the best-attainable filter for
its action;. The condition can include coin
flips as well as tests of sensory input. The
learner does not attempt to construct new
actions. In our current context, it would be
useful to have a theory of constructing or
adapting new plans for the plan library, but
there hasn’t been much work in this area
(however, see Hammond [1988]).

The learner gets feedback about how appro-

Articles

Unknown Territory

Visible

Irrelevant
Territory

Figure 15. Local Vector Fields (Miller and Slack 1991).

priate its past actions have been. We can make
various alternative assumptions about this
feedback signal:

First, it can be deterministic or stochastic.
In our context, we always assume the latter.
Reinforcements are correlated with actions,
but even the correct action can get a bad feed-
back signal some of the time.

Second, it can be stationary or nonstation-
ary, depending on whether the world’s behav-
ior changes over time.

Third, it can be binary or graded. In the
former case, all we know is that previous
actions were good or bad. In the latter case,
we have some notion of how far they were
from right. (The extra information helps only
if an action is parameterized in such a way
that we know how to change it a little bit.)

Fourth, it can be immediate or delayed.

Fifth, it can be memoryless or state depen-
dent.

The last two items are closely related.
Figure 16 clarifies the distinction. Suppose the
agent has to make a decision at time t; based
on input I; and it opts for action A,. If it gets
a feedback signal at time t; +1 (or f; + € in an
asynchronous model), and the signal depends
only on the pair <I;, A;>, it is immediate,
memoryless, feedback. Now suppose A; has
no immediate effects but sends the robot into
a zone whose future feedback history is inferi-
or or superior to the average. We have delayed
feedback. Now suppose that the feedback
signal depends not just on <I;, A > but on the
past sequence of input ... I;,, I 7;, I;. Now we

SUMMER 1992 73

Articles

74 Al MAGAZINE

Inputd
a) 1

Action d
O

Current
State

d-2 d-1 Inputd

ol

Action d O
» O—O0—O=__

-
-
-~
~~.
~~

State resulting
from previous
inputs

Feedback d+1

Feedback d+k

}

O

Figure 16. Feedback Regimes.

(a) Memoryless, immediate. (b) Delayed, state-dependent feedback.

have state-dependent feedback, so called because
the feedback depends on the state the robot
has been driven into by prior input.

For the moment, let’s focus on the case of
stochastic, stationary, binary, immediate, and
memoryless learning. In this paradigm, what
the planner is trying to learn can be thought
of as a table giving the expected reward of
each combination of actions for each possible
condition. Once it learns the table, it should
always pick the action combination with the
highest possible value (because “being sta-
tionary” means that the rules never change).

Unfortunately, this scenario assumes that
there are only a few distinct input and that
what to do when one input is seen is inde-
pendent of what to do when any other input
is seen. However, suppose the input is a pattern
of N bits. There are then 2N possible input,
and those that share bits are likely to indicate
the same action. If there are k actions, then
there are k2" different hypotheses about how
input map to actions. It’s unrealistic to search
all of them, so we need to bias the learning
algorithm by focusing on a particular subset,
or hypothesis space, at the outset (Mitchell
1980; Haussler 1988). At this point, all com-
putational learning theory opens up before us.

I confine myself to examining one algo-

rithm, owed to Kaelbling (1990), called GTRL.
(It’s based on Schlimmer’s [1987] STAGGER
algorithm.) For the purpose of exposition, I
assume that there are just two actions, and
the problem is to find a Boolean combination
of the input bits that tells us when to pick
action 1 as opposed to action 0. The algorithm
keeps a set of candidate hypotheses around,
each a Boolean combination of input, and it
tracks how well each candidate has done.
That is, every time it takes an action and gets
back a yes or a no, the algorithm updates the
success and failure counts of every candidate
hypothesis based on whether the hypothesis
would have recommended the same action.
The hypothesis that gets to control the action
recommendation on the next cycle is the one
with the highest value of
K x er(h) + er-ub(h) ,

where (roughly) er(h) is the expected rein-
forcement for a hypothesis h based on
comparison of past behavior with what h rec-
ommended, and er-ub(h) is an upper bound
(arrived at using statistical methods) e such
that the chance of the true value of er(h)
being higher than e is less than 5 percent. K is
chosen to be » 1. As more data are gathered,
er-ub and er converge, and the K x er(h) term
dominates. Initially, however, the er-ub figure

is significantly higher and drives the agent
toward attempting to gather more data about
the hypothesis in question.

As statistics are gathered, some hypotheses
do poorly and are pruned. To take their place,
the algorithm generates new hypotheses by
creating disjunctions and conjunctions of old
ones to some size limit. When creating dis-
junctions, GTRL tries to make use of hypothe-
ses that have high sufficiency, meaning that
they tend to do well when they recommend
action 1 (that is, evaluate to true). When cre-
ating conjunctions, it uses necessity, a measure
of how well a hypothesis does when it recom-
mends action O (that is, evaluates to false).

The GtrL algorithm works fairly well, espe-
cially in nonstationary environments, where
its tendency to keep trying new things helps
it track the currently correct hypothesis. Con-
sult Kaelbling (1990) for details of its perfor-
mance on test cases of both artificial tasks
and tasks involving a simulated robot learning
to find a beacon.

A similar approach was used by Maes and
Brooks (1990) to get a six-legged robot to
learn to walk. The robot could take actions
such as “Swing leg K forward” or “Swing leg K
backward,” and the reinforcement signal was
whether the belly stayed off the floor and
whether forward movement of the whole
robot occurred. Input sensors told the robot
whether each leg was in contact with the
ground. For every action, the learning algo-
rithm tracked its current best hypothesis
regarding which conjunction of conditions
should trigger the action. New sensor input
are added to a conjunction if they seem to be
correlated with positive reinforcement. This
algorithm was able to learn within a few min-
utes to keep the robot moving forward.

To this point, I have assumed that feedback
is immediate and without memory. If you
want to relax the immediacy assumption,
then you get the classical temporal credit-
assignment problem, where actions taken at
time d have consequences at some later time
when the learner won’t know which past
actions were responsible. Lately, most of the
attention in this area has gone to approaches
related to Sutton’s (1988) temporal difference
methods for learning. The temporal differ-
ence approach is to separate the job of rein-
forcing the current action and the job of
predicting what the eventual reinforcement
will actually be. Each such prediction is a
function of the current input (we're still
assuming state is irrelevant). On each itera-
tion, we use the current best guess regarding
eventual reinforcement as the reinforcement
signal for the action learner. These guesses

will eventually be reasonable if the reinforce-
ment-prediction learner does its job.

Now the only problem is to learn good
estimates of future reinforcement. Let d be the
time of decision. Define the value of action a
in response to input i, to be

V(iy a) = R(d + 1) + y(Expected V(ig,y, ag.1) ,
where R(¢) = reinforcement at time t; Expected
V(iz1, a4,1) = expected value given likely i;,
and optimal behavior thereafter; and g = dis-
count rate for future reinforcement, a number
between O and 1. A reinforcement r attained
At time units in the future is counted as cur-
rently worth only y3*+1r to the agent. Thus,
the total lifetime reinforcement as measured
at time d is

> VR

Without this kind of discounting, many deci-
sions would have infinite reward (or negatively
infinite), and there would be no basis for
choice among them.

Assuming the robot experiences all input
repeatedly (and keeping in mind that there is
no state beyond the current input), we can
learn V by keeping a table V(l a) of estimates
of V. After taking action a,, getting reinforce-
ment R(d +1), and choosing the next action
g, add the following to V(zd, agy):

AV(iy, ag) = aR(d + 1) +YWig1, age) - Viig,
ag)) -

This equation might look imposing but note
that the quantity after the a([} factor

R(d + 1) +yV(ig1, age1) - Viig ag)
is 0 when the table of estimates is correct.
Otherwise, it’s a measure of the discrepancy
between V(ld, ay) and

R(d + 1) + y(Expected V(ig,1, ag41))
using ‘A/(id+1, dg.1) to estimate this expected
value. The idea is to push V in the right direc-
tion at a speed governed by a.

Temporal difference methods are appealing
for their simplicity, theoretical properties, and
practicality (Sutton 1988; Kaelbling 1990).
However, they do not as yet solve some of the
hard problems. One of the hardest problems
is state-dependent feedback. One way to model
it is to broaden the set of input to include
input sequences to some length. However,
this option is obviously combinatorially
explosive. As usual, it is not hard to think of
situations that baffle any learning algorithm.
Learning makes the most sense when it is
thought of as filling in the details in an algo-
rithm that is already nearly right. An example
is map learning, where the agent’s techniques
are specialized to the case of figuring out the
shape of its environment. This problem is vir-

Articles

Temporal
difference
methods are
appealing for
their
simplicity,
theoretical
properties,
and
practicality.

SUMMER 1992 75

Articles

76 Al MAGAZINE

tually impossible to solve when cast in terms
of maximizing reinforcement unless the world
is shaped simply, and the same sorts of
reward are found in the same places all the
time. (Feedback is strongly state dependent.)
A much better approach is to wire in the pre-
supposition that the world has a stable topol-
ogy and geometry.

Conclusions

The main conclusion I want to draw is that
there is such a thing as robot planning, an
enterprise at the intersection of planning and
robotics. It consists of attempts to find fast
algorithms for generating, debugging, and
optimizing robot programs, or plans, by rea-
soning about the consequences of alternative
plans. Its methods are influenced by two
elements.

First are limitations on the quantity and
the quality of sensory information. Most
actions are taken on the basis of continually
updated vectors of bits. Complex symbolic
descriptions of the robot’s surroundings are
not available. The robot’s model of world
physics is often weak and needs to be supple-
mented by learning.

Second is the need to make decisions fast.
Because of the need for speed, there is unlikely
to be a general algorithm for robot planning.
Instead, we assemble a suite of techniques for
different parts of the job. Such an assembly is
already forming. In my opinion, we will do a
better job of understanding this assembly if
we agree on terms; concepts; and, to the
extent possible, notations.

There are a lot of topics I could not cover in
this survey, including map learning, assembly
planning, decision and estimation theory,
adaptive control, and computational learning
theory.6

One topic that was conspicuously absent is
logical formalism. The reason for this omission
is that practice has outstripped logic. Formal
theories are still focusing on classical planning
and the projection of simple action sequences.
What we really need is a formal framework
that embraces programming language seman-
tics, including concurrency; reasoning about
abstract intentions before knowing how or if
they will be fulfilled; temporal reasoning,
including probability; and control theory.
This framework might sound like a tall order.
Actually, these four elements have been well
studied, and to some extent, all we need is for
someone to put them together. We don't need
the theory to be computationally tractable;
we don’t expect a robot to prove theorems in
real time about what it is about to do. Instead,

we need the theory as a tool for robot design-
ers to use in proving that their plans and
planning algorithms can bring about results
in the world. Some encouraging preliminary
results can be found in Pelavin (1988) and
Lyons and Arbib (1989).

Finally, a comment on where I expect the
field to go. I expect to see the development
of formal methods, as I just discussed. I also
expect to see a strengthening of the tugs on
robot planning from the two disciplines it
relates to. In the short run, the pull toward
robotics is definitely stronger, but eventually
planning will pull back. I anticipate this
development by making some architectural
recommendations for future robot planners:

Adopt explicit plans: It will pay to have a
simple, uniform plan notation at all levels of
the robot program. Software is better than
hardware. It’s more flexible and encourages
run-time plan manipulation, which is easier
than conventional wisdom might suggest.

Always behave: The plan runs even while
the planner thinks. If parts of the plan fail,
the rest can usually continue while the plan-
ner fixes it.

Treat planning as anytime plan transfor-
mation: Make use of fast, interruptable algo-
rithms (Zweben, Yang, Boddy, et al. have
given us some examples). When the planner
finds a better plan, swap it in.

Use learning—judiciously: Don’t be afraid
to let the robot learn the behavior of the
world if it can be characterized statistically.

Acknowledgments

This article is based on an invited talk given at
the July 1991 National Conference on Artifi-
cial Intelligence. Some of the work described
here was supported by DARPA/BRL grant
DAA15-87-K-0001. A referee supplied some
helpful comments.

Notes

1. There is actually more to rex than I imply here.
See Kaelbling and Wilson (1988) for the whole story.
2. It would be better if we changed terminology so
that the technique just described were known as
“search through partially ordered plans.” However,
getting people to change terminology can be a
challenge.

3. We could call it “search through interleaved plans.”

4. We could call it “search through concurrent
plans.” If these terminological suggestions were
adopted, let me deprecate the tendency for the
word plan to transmute to “planning,” the process
that has led to the use of the phrase reactive plan-
ning to mean “search through reactive plans.” The
last thing we need is for, for example, “search

through concurrent plans” to become known as
concurrent planning.

5. Koditschek (1987) proved that there exists a field
with no such local minima, but there is no reason
for this field to be easily computable or to bear
much resemblance to the usual locally generated
field.

6. I have a feeling that my choice of topics might
mislead the less informed reader. Let me make it
clear that in a practical system, the code required to
do domain-specific planning (for example, to
assemble a set of parts) is likely to dwarf the code
required to do the kinds of projection and transfor-
mation that I discussed.

References

Agre, P. E., and Chapman, D. 1990. What Are Plans
For? In New Architectures for Autonomous Agents:
Task-Level Decomposition and Emergent Functionality,
ed. P. Maes. Cambridge, Mass.: MIT Press.

Agre, P. E., and Chapman, D. 1987. pENGI: An Imple-
mentation of a Theory of Activity. In Proceedings of
the Sixth National Conference on Artificial Intelli-
gence, 268-272. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Allen, J.; Hendler, J.; and Tate, A. 1990. Readings in
Planning. San Mateo, Calif.: Morgan Kaufmann.

Boddy, M., and Dean, T. 1989. Solving Time-Depen-
dent Planning Problems. In Proceedings of the
Eleventh International Joint Conference on Artifi-
cial Intelligence, 979-984. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial
Intelligence.

Brooks, R. 1986. A Robust Layered Control System
for a Mobile Robot. IEEE Journal of Robotics and
Automation RA-2(1): 14-23.

Brooks, R. 1982. Solving the Find-Path Problem by
Good Representation of Space. In Proceedings of
the Second National Conference on Artificial Intel-
ligence, 381-386. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Canny, J. 1988. The Complexity of Robot Motion Plan-
ning. ACM Doctoral Dissertation Series. Cambridge,
Mass.: MIT Press.

Chapman, D. 1990. Vision, Instruction, and Action,
Technical Report, 1204, Al Laboratory, Massachusetts
Inst. of Technology.

Chapman, D. 1987. Planning for Conjunctive Goals.
Attificial Intelligence 32(3): 333-377.

Charniak, E., and McDermott, D. 1985. Introduction
to Artificial Intelligence. Reading, Mass.: Addison-
Wesley.

Collins, G. 1987. Plan Creation: Using Strategies as
Blueprints. Ph.D. diss., Dept. of Computer Science,
Yale Univ.

Connell, J. 1990. Minimalist Mobile Robots. Boston:
Academic.

Dean, T., and Boddy, M. 1988. An Analysis of Time-

Dependent Planning. In Proceedings of the Seventh
National Conference on Artificial Intelligence,

49-54. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Drummond, M., and Bresina, J. 1990. Anytime Syn-
thetic Projection: Maximizing the Probability of
Goal Satisfaction. In Proceedings of the Eighth
National Conference on Artificial Intelligence,
138-144. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Firby, R. J. 1989. Adaptive Execution in Complex
Dynamic Worlds, Technical Report, 672, Dept. of
Computer Science, Yale Univ.

Firby, R. J. 1987. An Investigation into Reactive
Planning in Complex Domains. In Proceedings of
the Sixth National Conference on Artificial Intelli-
gence, 202-206. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Georgeff, M., and Lansky, A. 1987. Reactive Reason-
ing and Planning. In Proceedings of the Seventh
National Conference on Artificial Intelligence,
677-682. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Georgeff, M., and Lansky, A. 1986. Procedural
Knowledge. In Proceedings of the IEEE (Special
Issue on Knowledge Representation), 1383-1398.
Washington, D.C.: IEEE Computer Society.

Gupta, N., and Nau, D. 1991. Complexity Results
for Blocks-World Planning. In Proceedings of the
Ninth National Conference on Artificial Intelli-
gence, 629-633. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Hammond, K. 1990. Explaining and Repairing
Plans That Fail. Artificial Intelligence 45(1-2): 173-228.

Hammond, K. 1988. Case-Based Planning: An Inte-
grated Theory of Planning, Learning, and Memory.
New York: Academic.

Hanks, S. 1990a. Practical Temporal Projection. In
Proceedings of the Eighth National Conference on
Artificial Intelligence, 158-163. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Hanks, S. 1990b. Projecting Plans for Uncertain
Worlds, Technical Report, YALEU/DCS/RR-756,
Dept. of Computer Science, Yale Univ.

Haussler, D. 1988. Quantifying Inductive Bias: Al
Learning Algorithms and vALIANT’s Learning Frame-
work. Artificial Intelligence 36(2): 177-222.

Hendler, J.; Tate, A.; and Drummond, M. 1990. Al
Planning: Systems and Techniques. AI Magazine
11(2): 61-77.

Horvitz, G. E; Cooper, G. F; and Heckerman, D. E.
1989. Reflection and Action under Scarce Resources:
Theoretical Principles and Empirical Study. In Pro-
ceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, 1121-1127. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Kaelbling, L. P. 1990. Learning in Embedded Systems.
Ph.D. diss., Teleos Research Report, 90-04, Stanford
Univ.

Kaelbling, L. P. 1988. Goals as Parallel Program
Specifications. In Proceedings of the Seventh
National Conference on Artificial Intelligence,
60-65. Menlo Park, Calif.: American Association for

Articles

SUMMER 1992 77

Articles

78 Al MAGAZINE

Artificial Intelligence.

Kaelbling, L. P. 1987. An Architecture for Intelligent
Reactive Systems. In Reasoning about Plans and
Actions, eds. M. Georgeff and A. Lansky, 395-410.
San Mateo, Calif.: Morgan Kaufmann.

Kaelbling, L. P., and Rosenschein, S. J. 1990. Action
and Planning in Embedded Agents. In New Archi-
tectures for Autonomous Agents: Task-Level Decompo-
sition and Emergent Functionality, ed. P. Maes,
35-48. Cambridge, Mass.: MIT Press.

Kaelbling, L., and Wilson, N. J. 1988. rRex Program-
mer’s Manual, Technical Note 381R, SRI Interna-
tional, Menlo Park, California.

Khatib, O. 1986. Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots. International Jour-
nal of Robotics Research 5(1): 90-98.

Kirkpatrick, S.; Gelatt, C. D.; and Vecci, M. P. 1983.
Optimization by Simulated Annealing. Science
220(4598): 671-680.

Koditschek, D. 1987. Exact Robot Navigation by
Means of Potential Functions: Some Topological
Considerations. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation,
1-6. Washington, D.C.: IEEE Computer Society.

Koren, Y., and Borenstein, J. 1991. Potential Field
Methods and Their Inherent Limitations for Mobile
Robot Navigation. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation,
1398-1404. Washington, D.C.: IEEE Computer
Society.

Kuipers, B., and Byun, Y. 1988. A Robust, Qualita-
tive Method for Robot Spatial Reasoning. In Pro-
ceedings of the Seventh National Conference on
Artificial Intelligence, 774-779. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Latombe, J. 1991. Robot Motion Planning. Boston:
Kluwer Academic.

Lin, S., and Kernighan, B. W. 1973. An Effective
Heuristic Algorithm for the Traveling Salesman
Problem. Operations Research 21: 498-516.

Lozano-Perez, T. 1983. Spatial Planning: A Configu-
ration Space Approach. IEEE Transactions on Com-
puters C-32(2): 108-120.

Lyons, D. M., and Arbib, M. A. 1989. A Formal
Model of Computation for Sensory-Based Robotics.
IEEE Transactions on Robotics and Automation 5(3):
280-293.

Lyons, D. M.; Hendriks, A. J.; and Mehta, S. 1991.
Achieving Robustness by Casting Planning as
Adaptation of a Reactive System. In Proceedings of
the IEEE Conference on Robotics and Automation,
198-203. Washington, D.C.: IEEE Computer Society.

McAllester, D., and Rosenblitt, D. 1991. Systematic
Nonlinear Planning. In Proceedings of the Ninth
National Conference on Artificial Intelligence,
634-639. Menlo Park, Calif.: American Association
for Artificial Intelligence.

McDermott, D. 1992. Spatial Reasoning. In Encyclo-
pedia of Artificial Intelligence, 2d ed., ed. S. Shapiro,
1322-1334. New York: Wiley.

McDermott, D. 1991. A Reactive Plan Language,

Technical Report, YALEU/DCS/RR-864, Dept. of
Computer Science, Yale Univ.

McDermott, D. 1990. Planning Reactive Behavior:
A Progress Report. In Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling, and
Control, 450-458. San Mateo, Calif.: Morgan Kauf-
mann.

McDermott, D. 1987. A Critique of Pure Reason.
Computational Intelligence 3(3): 151-160.

Maes, P., and Brooks, R. A. 1990. Learning to Coor-
dinate Behaviors. In Proceedings of the Eighth
National Conference on Artificial Intelligence,
796-802. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Mataric, M. J. 1990. A Distributed Model for Mobile
Robot Environment-Learning and Navigation,
Technical Report, 1228, Al Laboratory, Massachusetts
Inst. of Technology.

Miller, D., and Slack, M. G. 1991. Global Symbolic
Maps from Local Navigation. In Proceedings of the
Ninth National Conference on Artificial Intelli-
gence, 750-755. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Mitchell, T. 1990. Becoming Increasingly Reactive.
In Proceedings of the Eighth National Conference
on Artificial Intelligence, 1051-1058. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Nau, D. S. 1982. An Investigation of the Causes of
Pathology in Games. Artificial Intelligence 19:
257-258.

Nau, D. S.; Yang, Q.; and Hendler, J. 1990. Opti-
mization of Multiple-Goal Plans with Limited
Interactions. In Proceedings of the Workshop on Inno-
vative Approaches to Planning, Scheduling, and Con-
trol, 160-165. San Mateo, Calif.: Morgan
Kaufmann.

Nilsson, N. J. 1988. Action Networks. In Proceed-
ings of the Rochester Planning Workshop: From
Formal Systems to Practical Systems, eds. J. Tenen-
berg, J. Weber, and J. Allen, 20-51. Rochester, N.Y.:
University of Rochester Department of Computer
Science.

Norman, D. A., and Bobrow, D. G. 1975. On Data-
Limited and Resource-Limited Processes. Cognitive
Psychology 7(1): 44-64.

Ow, P. S.; Smith, S.; and Thiriez, A. 1988. Reactive
Plan Revision. In Proceedings of the Seventh
National Conference on Artificial Intelligence,
77-82. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Payton, D. 1990. Exploiting Plans as Resources for
Action. In Proceedings of the Workshop on Innovative
Approaches to Planning, Scheduling, and Control,
175-180. San Mateo, Calif.: Morgan Kaufmann.
Pelavin, R. 1988. A Formal Approach to Planning
with Concurrent Actions and External Events.
Ph.D. diss., Dept. of Computer Science, Univ. of
Rochester.

Rich, E. 1983. Artificial Intelligence. New York:
McGraw-Hill.

Rosenschein, S. J. 1989. Synthesizing Information-

Tracking Automata from Environment Descriptions.
In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning,
Toronto, 386-393. San Mateo, Calif.: Morgan Kauf-
mann.

Russell, S., and Wefald, E. 1991. Principles of Metar-
easoning. Artificial Intelligence 49 (1-3): 361-395.

Schlimmer, J. C. 1987. Learning and Representation
Change. In Proceedings of the Sixth National Con-
ference on Artificial Intelligence, 511-515. Menlo
Park, Calif.: American Association for Artificial
Intelligence.

Schoppers, M. 1987. Universal Plans for Reactive
Robots in Unpredictable Environments. In Proceed-
ings of the Tenth International Joint Conference on
Artificial Intelligence, 1039-1046. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Simmons, R. G. 1991. Concurrent Planning and
Execution for a Walking Robot. In Proceedings of
the IEEE Conference on Robotics and Automation,
300-305. Washington, D.C.: IEEE Computer Society.
Simmons, R. G. 1990. An Architecture for Coordi-
nating Planning, Sensing, and Action. In Proceedings
of the Workshop on Innovative Approaches to Planning,
Scheduling, and Control, 292-297. San Mateo, Calif.:
Morgan Kaufmann.

Simmons, R. G. 1988a. A Theory of Debugging
Plans and Interpretations. In Proceedings of the
Seventh National Conference on Artificial Intelli-
gence, 94-99. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Simmons, R. G. 1988b. Combining Associational
and Causal Reasoning to Solve Interpretation and
Planning Problems, Technical Report, TR 1048, Al
Laboratory, Massachusetts Inst. of Technology.
Sussman, G. 1975. A Computer Model of Skill Acquisi-

tion. New York: American Elsevier.

Sutton, R. 1988. Learning to Predict by the Method
of Temporal Differences. Machine Learning 3(1):
9-44.

Tate, A. 1977. Generating Project Networks. In Pro-
ceedings of the Fifth International Joint Conference
on Artificial Intelligence, 888-893. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Thorpe, C.; Hebert, M. H.; Kanade, T.; and Shafer, S.
1988. Vision and Navigation for the Carnegie-
Mellon Navlab. IEEE Transactions on Pattern Analysis
and Machine Intelligence 10(3): 362-373.

Walter, W. G. 1950. An Imitation of Life. Scientific
American 182(5): 42.

Wilkins, D. 1988. Practical Planning: Extending the
Classical Al Planning Paradigm. San Mateo, Calif.:
Morgan Kaufmann.

Yang, Q. 1989. Improving the Efficiency of Plan-
ning, Technical Report, CS-89-34, Dept. of Mathe-
matics, Univ. of Waterloo.

Zweben, M.; Deal, M.; and Gargan, R. 1990. Any-
time Rescheduling. In Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling, and
Control, 251-259. San Mateo, Calif.: Morgan Kauf-
mann.

Drew McDermott received all
his education at the Mas-
sachusetts Institute of Tech-
nology, culminating in a Ph.D.
in 1976. In 1976, he moved to
Yale University, where he is
currently. He recently became
chairman of the Computer
Science Department at Yale.

Readings from Al Magazine

The First Five Years: 1980-1985
Edited with a Preface by Robert Engelmore

AAALl is pleased to announce publication of Readings from Al Magazine, the complete collection
of all the articles that appeared during Al Magazine's first five years. Within this 650-page
indexed volume, you will find articles on Al written by the foremost practitioners in the field—
articles that earned Al Magazine the title “journal of record for the artificial intelligence com-
munity.” This collection of classics from the premier publication devoted to the entire field of
artificial intelligence is available in one large, paperbound desktop reference.

Subjects Include:

¢ Automatic Programming ¢ Distributed Artificial Intelligence * Games ¢ Learning

¢ Infrastructure ¢ Natural Language Understanding ¢ Problem Solving ¢ Robotics ¢ Education

¢ General Artificial Intelligence ¢ Knowledge Acquisition ¢ Legal Issues ¢ Object Oriented
Programming ¢ Programming Language ¢ Simulation ¢ Technology Transfer ¢ Discovery

¢ Expert Systems e Historical Perspectives ¢ Knowledge Representation ¢ Logic ¢ Partial
Evaluation ° Computer Architectures ¢ Reasoning with Uncertainty

$74.95 plus $2 postage and handling. 650 pages, illus., appendix, index. ISBN 0-929280-01-6.
Send prepaid orders to American Association for Artificial Intelligence,
445 Burgess Drive, Menlo Park, California 94025.

Articles

SUMMER 1992 79

