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AUTOMATIC PROBLEM SOLVING’ 

For intelligent computers to be able to interact with the 
real world, they must be able to aggregate individual 
actions into sequences to achieve desired goals. This 
process is referred to as automatic problem solving, 
sometimes more casually called automatic planning. The 
sequences of actions that are generated are called plans. 

Early work in automatic problem-solving focused on 
what Newell has called “weak methods ” While these problem- 
solving strategies are quite general and are formally 
tractable, they are insufficient in practice for solving 
problems of any significant complexity. During the last 
decade, a number of techniques have been developed for 
improving the efficiency of these strategies. Since these 
techniques operate within the context of the general 
strategies, they are termed here problem-solving tactics. 
The bulk of this paper consists of a description of the 
problem-solving strategies and a catalogue of tactics for 
improving their efficiency.This is followed by an attempt to 
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provide some perspective on and structure to the set of 
tactics. Finally, some new directions in problem-solving 
research are discussed, and a personal perspective is 
provided on where the work is headed: toward greater 
flexibility of control and more intimate integration of plan 
generation, execution, and repair. 

Because problem solving involves exploration of 
alternative hypothesized sequences of actions, a symbolic 
model of the real world, referred to as a world model, is 
used to enable simple simulations of the critical aspects of 
the situation to be run as the plans are evolved. As with 
all models, the world models used in problem solving are 
abstractions or oversimplifications of the world they 
model. 

What is Needed to Generate Plans 
The general function of an automatic problem solving 

system, then, is to construct a sequence of actions that 
transforms one world model into another. There are three 
basic capabilities that a problem solving system must have. 
These are: 

1. Management of State Description Models - A state 
descriptiorz model is a specification of the state of the world 
at some time. The facts or relations that are true at any 
particular time can be represented as some equivalent of 
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predicate calculus formulas. (We shall refer, somewhat 
loosely, to these facts and relations as attributes of a state.) 
The critical aspect of representation for problem solving is 
the need to represent alternative and hypothetical 
situations, that is, to characterize the aggregate effects of 
alternative sequences of actions as the problem solver 
searches for a solution. 

Three methods have typically been used for representing 
these alternatives. One method has been to include an 
explicit state specification in each literal or assertion (as 
suggested by McCarthy and Hayes [2l and implemented by 
Green [31). Another alternative is to associate each literal 
with an implicit data context that can be explicitly 
referenced (as in QA4 [4l). A third choice is to have all 
the literals that describe the states explicitly tied up in the 
control structure of the problem solver (as, for example, 
in most problem solvers written in CONNIVER El>. 

2. Deductive Machinery - A state description model, 
then, contains all the information needed to characterize a 
particular state of the world. The information will not all 
be explicitly encoded, however, so a deductive engine of 
some sort must be provided to allow needed information 
to be extracted from a model. The deductions are of two 
types: within a particular state (this is where traditional, 
“monotonic” deduction systems are used), and across 
states (that is, reasoning about the effects of prior actions 
in a sequence). The deductive machinery can be viewed 
as a question-answering system that allows the problem 
solver to retrieve information about a particular state of 
the world from the state description model. 

3. Action Models - In addition to state description models 
and a means of querying them, a problem solver must 
have a way of modelling what changes when an action is 
applied in an arbitrary state. Thus, an action is described 
by a mapping from one state description to another. Such 
a mapping is usually referred to as an operator. The 
mapping may be specified either by procedures, as in the 
problem solvers based on so-called AI languages [61, or by 
declarative data structures. In any case, they must specify 
at least the expressions that the action will make true in 
the world model and the expressions that its execution will 
make untrue in the world model. Usually, to help guide 
the heuristic search for actions that are relevant to achieve 
particular goals, one of the expressions to be made true by 
each operator is designated in some way as its “primary 
effect .” 

The Basic Control Strategy for Plan 
Generation 
The process of generating a plan of action that achieves 

a desired goal state from a given initial state typically 
involves a extensive search among alternative sequences. 
A number of control strategies for tree search constitute 
the basic tools of all problem solving systems. 

Problem solving systems usually work backward from 
the goal state to find a sequence of actions that could lead 
to it from the initial state. This procedure generates a tree 
of action sequences, with the goal state at the root, 
instances of operators defining the branches, and 
intermediate states defining the nodes. A tree search 
process of some sort is used to find a path to a node that 
corresponds to the initial state. The path from initial state 
to goal then defines the plan. Two particular tree search 
strategies are discussed here since they are so commonly 
used. 

The first of these is means-ends analysis, which was the 
central search algorithm used by GPS [71 and STRIPS [81. 
This strategy works as follows. The “difference” between 
the initial and goal states is determined, and that instance 
of the particular operator that would most reduce the 
difference is chosen. 

If this operator is applicable in the initial state, it is 
applied, creating a new intermediate state. If the goal is 
satisfied in the new state, the search is completed. 
Otherwise, the difference between the new state and the 
goal state is determined, an operator to most reduce the 
new difference is chosen, and the process continues. 

If the chosen operator is not applicable, its preconditions 
are established as a new intermediate subgoal. An attempt 
is made, using the search strategy recursively, to find a 
sequence of operators to achieve the subgoal state. If this 
can be done, the chosen operator is now applicable and the 
search proceeds as described above. If the new subgoal 
cannot be achieved, a new instance of an operator to 
reduce the difference is chosen and the process continues 
as before. 

A second important search strategy, used in simple 
problem solvers written in the so-called AI languages [61, 
is backtracking, which works in the following manner. If 
the goal is satisfied in the initial state, a trivial solution has 
been found. If not, an operator that, if applied, would 
achieve the goal is selected. If it is applicable in the initial 
state, it is applied and a solution has been found. If the 
chosen operator is not applicable, operators that would 
achieve its preconditions are found, and the search 
proceeds as before to find plans to render them applicable. 
If the search fails, a different candidate operator is chosen 
and the process repeats. 

This strategy follows a line of action out fully before 
rejecting it. It thus permits the search tree to be 
represented elegantly; all the active parts of the search tree 
can be encoded by the control stack of the search 
procedure itself, and all the inactive parts of the search 
tree need not be encoded at all. Because of the full search 
at each cycle of the process, it is critical that the correct 
operator be chosen first almost always. Otherwise, the 
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simplicity of representation offered by this strategy will be 
amply repaid by the inefficiency of the search. 

As was discussed above, these strategies are insufficient 
in practice for solving problems of any significant 
complexity. In particular, one of the most costly behaviors 
of the basic problem solving strategies is their inefficiency 
in dealing with goal descriptions that include conjunctions. 
Because there is usually no good reason for the problem 
solver to prefer to attack one conjunct before another, an 
incorrect ordering will often be chosen. This can lead to 
an extensive search for a sequence of actions to try to 
achieve subgoals in an unachievable order. 

TACTICS 
FOR EFFICIENT PROBLEM SOLVING 

Hierarchical Planning 
The general strategies described above apply a uniform 

procedure to the action descriptions and state descriptions 
that they are given. Thus, they have no inherent ability to 
distinguish what is important from what is a detail. 
However, some aspects of almost any problem are 
significantly more important than others. By employing 
additional knowledge about the ranking in importance of 
aspects of the problem description, a problem solver can 
concentrate its efforts on the decisions that are critical 
while spending less effort on those that are relatively 
unimportant. 

Information about importance can be used in several 
ways. First, the standard strategies can be modified to 
deal with the most important (and most difficult to 
achieve) subgoals first. The solution to the most 
important subgoals often leaves the world model in a state 
from which the less important subgoals are still achievable 
(if not, the weaker search strategies must be employed as 
a last resort). The less important subgoals could 
presumably be solved in many ways, some of which would 
be incompatible with the eventual solution to the 
important subgoals. Thus, this approach constrains the 
search where the constraints are important, and avoids 
overconstraining it by making premature choices about 
how to solve less important aspects of the problem. 
Siklossy and Dreussi [9] used an explicit ordering of 
subgoal types to guide search. 

Another way to focus on the critical decisions first is to 
abstract the descriptions of the actions, thereby creating a 
simpler problem. This abstracted problem can be solved 
first, producing a sequence of abstracted actions. Then 
this plan can then be used as a skeleton, identifying critical 
subgoals along the way to a solution, around which to 
construct a fully detailed plan. This tactic was used in 
conjunction with an early version of GPS by Newell, 

Shaw, and Simon [71 to find proofs in symbolic logic 
(using abstracted operators and state descriptions that 
ignored the connectives and the ordering of symbols). 

Finally, abstraction can be extended to involve multiple 
levels, leading to a hierarchy of plans, each serving as a 
skeleton for the problem solving process at the next level 
of detail. The search process at each level of detail can 
thus be reduced to a sequence of relatively simple 
subproblems of achieving the preconditions of the next 
step in the skeleton plan from an initial state in which the 
previous step in the skeleton plan has just been achieved. 
In this way, rather complex problems can be reduced to a 
sequence of much shorter, simpler subproblems. Sacerdoti 
applied this tactic to robot navigation tasks 1101 and to 
more complex tasks involving assembly of machine 
components Ill I. 

Hierarchical Plan Repair 
A side-effect of hierarchical planning is that plans can 

possibly be created that appear to be workable at a high 
level of abstraction but whose detailed expansions turn out 
to be invalid. The basic idea behind the plan repair tactic 
is to check, as a higher level plan is being expanded, that 
all the intended effects of the sequence of higher-level 
actions are indeed being achieved by the collection of 
subsequences of lower-level actions. By exploiting the 
hierarchical structure of the plan, only a small number of 
effects need to be checked for. Various methods for 
patching up the failed plan can then be applied. This tactic 
was incorporated in a running system by Sacerdoti [ill 
and is very similar to a technique called “hierarchical 
debugging” articulated by Goldstein 1121 for a program 
understanding task. 

“Bugging” 
Rather than attempt to produce perfect plans on the first 

attempt, it can often be more -efficient to produce an initial 
plan that is approximately correct but contains some 
” bugs,” and subsequently alter the plan to remove the 
bugs. By employing additional knowledge about bug 
classification and debugging, this approach allows the 
decisions made during the problem-solving process about 
which action to try next to be made with less effort, since 
mistaken decisions can be subsequently fixed. 

Sussman, who first employed this tactic in his HACKER 
system [13], called it “problem-solving by debugging 
almost-right plans.” It is often referred to in the literature 
as the “debugging approach” and, indeed, it has spawned 
interesting research in techniques for debugging programs 
or plans developed both by machines and by people (see, 
for example, Sussman [141 and Goldstein and Miller [151>. 
Debugging, however, is an integral part of the execution 
component of any problem solver. What distinguishes this 
approach is a tolerance for introducing bugs while 
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generating the plan, and thus it can more accurately be 
called the ‘bugging” approach. 

This tactic works by deliberately making assumptions 
that oversimplify the problem of integrating multiple 
subplans. These assumptions may cause the problem 
solver to produce an initial plan with bugs in it. However, 
if the oversimplifications are designed properly, then only 
bugs of a limited number of types will be introduced, and 
relatively simple mechanisms can be implemented to 
remedy each expected type of bug. 

Special-Purpose Subplanners 

Once a particular subgoal has been generated, it may 
well be the case that it is of a type for which a special 
purpose algorithm, a stronger method than the weak 
method of the general-purpose problem solver, can be 
brought to bear. For example, in a robot problem, the 
achievement of an INROOM goal can be performed by a 
route-finding algorithm applied to a connectivity graph 
representing the interconnection of rooms, rather than 
using more general methods applied to less direct 
representations of the rooms in the environment. Such a 
special purpose problem 
Dreussi [91 to effect 
system’s performance. 

solver was used by Siklossy and 
dramatic improvements in the 

Wilkins [161 employs special-purpose subplanners in a 
chess problem solver for subgoals such as moving safely to 
a given square or checking with a given piece. 

Each special-purpose subplanner encodes additional 
knowledge about its specialty. To take advantage of it, the 
problem solver must incorporate information about how to 
recognize the special situation as well. 

Constraint Satisfaction 
Constraint satisfaction, the derivation of globally 

consistent assignments of values to variables subject to 
local constraints, is not usually thought of as a problem 
solving tactic. While it cannot be used to generate action 
sequences, it can play a very important role in particular 
subproblems, especially in determining the binding of 
variables when there is no clear locally computable reason 
to prefer one value over another. From this perspective, 
constraint satisfaction can be thought of as a type of 
special-purpose subplanner. 

Stefik [17] employs constraint satisfaction to assign 
values to variables in generating action sequences for 
molecular genetics experiments. 

Relevant Backtracking 
As a correct plan is being searched for, a problem solver 

will encounter many choice points at which there are 
several alternative steps to be taken. Most problem 
solvers employ sophisticated techniques to try to make the 
right choices among the alternative action sequences 
initially. Alternatively, a problem solver could focus on 
sophisticated post-mortem analyses of the information 
gained from early attempts that fail. By analyzing the 
reasons for the failure of a particular sequence of actions, 
the problem solver can determine which action in the 
sequence should be modified. This is in contrast with the 
straightforward approach of backtracking to the most 
recent choice point and trying other alternatives there. 
Fahlman [181 developed such a system for planning the 
construction of complex block structures. His system 
associated a “gripe handler” with each choice point as it 
was encountered, and developed a characterization of each 
failure when it occurred. When a particular line of action 
failed, the gripe handlers would be invoked in reverse 
chronological order to see if they could suggest something 
specific to do about the failure. The effect of this 
mechanism is to backtrack not to the most recent choice 
point, but to the relevant choice point. 

The tactic of relevant backtracking, which is also 
referred to in the literature as dependency-directed or 
non-chronological backtracking, was also used in a problem 
solver for computer-aided design developed by Latombe 
t191. 

Disproving 
Problem solvers have traditionally been automated 

optimists. They presume that a solution to each problem 
or subproblem can be found if only the right combination 
of primitive actions can be put together. Thus, the 
impossibility of achieving a given goal or subgoal state can 
only be discovered after an exhaustive search of all the 
possible combinations of potentially relevant actions It 
may well be the case that a pessimistic analysis of a 
particular goal, developing knowledge additional to that 
employed in building action sequences, would quickly 
show the futility of the whole endeavor. This procedure 
can be of particular value in evaluating a set of conjunctive 
subgoals to avoid working on any of them when one can 
be shown to be impossible. Furthermore, even if a goal 
cannot be shown to be impossible, the additional 
knowledge might suggest an action sequence that would 
achieve the goal. Siklossy and Roach 1201 developed a 
system that integrated attempts to achieve goals with 
attempts to prove their impossibility. 

Goal Regression 
The problem-solving tactics we have discussed so far all 

work by modifying, in one way or another, the sequence 
of actions being developed to satisfy the goals. Goal 
regression modifies the goals as well. It relies on the fact 
that, given a particular goal and a particular action, it is 
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possible to derive a new goal such that if the new goal is 
true before the action is executed, then the original goal 
will be true after the action is executed. The computation 
of the new goal, given the original goal and the action, is 
called regressing the goal over the action. 

As an example, let us suppose the overall goal consists 
of two conjunctive subgoals. This tactic first tries to 
achieve the second goal in a context in which a sequence 
of actions has achieved the first goal (similarly to the 
bugging tactic). If this fails, the second goal is regressed 
back across the last action that achieved the first goal. 
This process generates a new goal that describes a state 
such that if the last action were executed in it, would lead 
to a state in which the original second goal were true. If 
the regressed goal can be achieved without destroying the 
first goal, the tactic has succeeded. If not, the regression 
process continues. 

This tactic requires knowledge of the inverse effects of 
each operator. That is, in addition to knowing how the 
subsequent application of an operator changes a world 
model, the system must know how the prior application of 
the operator affects a goal. 

The goal regression technique was developed 
independently by Waldinger 1211 and Warren [22l. 

Pseudo-Reduction 
One of the most costly behaviors of problem solving 

systems is their inefficiency in dealing with goal 
descriptions that include conjunctions, as was noted at the 
end of Section 1. Ordering the conjuncts by importance, 
as described in the subsection on hierarchical planning 
above, can help, but there may still be multiple conjuncts 
of the same importance. One approach to the problem of 
selecting an order for the conjuncts is to ignore ordering 
them initially, finding a plan to achieve each conjunct 
independently. Thus, the conjunctive problem is reduced 
to several simpler, nonconjunctive problems. Of course, 
the plans to solve the reduced problems must then be 
integrated, using knowledge about how plan segments can 
be intertwined without destroying their important effects. 

This tactic creates plans that are not linear orderings of 
actions with respect to time, but are rather partial 
orderings, This renders the cross-state question-answering 
procedure described in Section 1.1 more complicated than 
for other tactics. 

By avoiding premature commitments to particular 
orderings of subgoals, this tactic eliminates much of the 
backtracking typical of problem solving systems. 
Pseudo-reduction was developed by Sacerdoti [Ill and has 
been applied to robot problems, assembly of 
electromechanical equipment, and project planning 1231. 
London 1241 has integrated aspects of goal regression and 
plan repair into a problem-reduction problem solver. 

WHAT’S GOING ON? 

We have just finished a brief (heuristically) guided tour 
of some of the problem-solving tactics used recently. 
They constitute a diverse bag of tricks for improving the 
efficiency of the problem solving process. In this section 
we focus on the underlying reasons why these techniques 
seem to help. Problem-solving is often described as 
state-space search, or as exploration of a tree of possible 
action sequences. We can find some structure for the bag 
of tactical tricks by remembering that search or exploration 
involves not only movement to new (conceptual) 
locations, but discovery and learning as well. 

The problem solver begins its work with information 
about only the initial state and the goal state. It must 
acquire information about the intermediate states as it 
explores them. It must summarize this information for 
efficient use during the rest of the problem-solving 
process, and it must take advantage of all possible 
information that can be extracted from each intermediate 
state. This can require considerable computational 
resources. In the simplest search strategies, the 
information may be simply a number representing the 
value of the heuristic evaluation function applied at that 
point. It may be much more, however. It may include a 
detailed data base describing the situation, information 
about how to deal with classes of anticipated subsequent 
errors, and dependency relationships among the attributes 
describing the situation. All this information is typically 
stored in intermediate contexts in one of the forms 
discussed in the first section of this paper. 

The information learned during the exploration process 
can be broken down into four kinds of relationships 
among the actions in a plan. These are. 

order relationships-the sequencing of the actions in 
the plan; 

hierarchical relationships-the links between each action 
at one level and the meta-actions above it and the more 
detailed actions below it; 

teleological relationships-the purposes for which each 
action has been placed in the plan; and 

object relationships-the dependencies among the objects 
that are being manipulated (which correspond to 
dependencies among the parameters or variables in 
the operators). 

These relationships can be explicated and understood 
only by carrying out the instantiation of new points in the 
search space. It is thus of high value to a problem solver 
to instantiate and learn about new intermediate states. As 
a simple example of a problem-solving tactic that displays 
incremental learning, consider relevant backtracking. By 
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following initial paths through the search tree, the problem 
solver learns which choice points are critical. Another 
clear example is constraint satisfaction, in which 
restrictions on acceptable bindings for variables are 
aggregated as search progresses. 

The difficulty is that, as with all learning systems, the 
acquisition of new information is expensive. The 
generation of each new state is a major time consumer in 
many problem solving systems. Furthermore, the 
generation of each intermediate state represents a 
commitment to a particular line of action by the problem 
solver. Since problems of any non-toy level of complexity 
tend to generate very bushy search trees, a breadth-first 
search strategy is impossible to use. Therefore, once a line 
of action has begun to be investigated, a problem-solving 
system will tend to continue with it. It is thus of high 
value to a problem solver, whenever possible, to avoid 
generating intermediate states not on the solution path. 
Those states that are generated must represent a good 
investment for the problem solver. 

Thus, there are two opposing ways to improve the 
efficiency of a problem solver. The first is to employ a 
relatively expensive evaluation function and to work hard 
to avoid generating states not on the eventual solution 
path. The second is to use a cheap evaluation function, to 
explore lots of paths that might not work out, but to 
acquire information about the interrelationships of the 
actions and objects in the world in the process. This 
information can then be used to guide (efficiently) 
subsequent search. 

Each of the tactics described in the previous section 
strikes a particular balance between the value of 
instantiating new intermediate states and the cost of 
commitment to particular lines of action. While none of 
the tactics use one approach exclusively, each can be 
categorized by the one it emphasizes. Furthermore, each 
can be distinguished according to one of the four types of 
relationships they depend on or exploit. Table 1 displays a 
candidate categorization. 

None of the tactics fit as neatly into the classification as 
the table suggests, because they typically have been 
embodied in a complete problem solving system and so 
must deal with at least some aspects of many of the 
categories. 

WHAT’S NEXT? 

The current state of the art in plan generation allows for Tactics that emphasize the clever selection of new paths 
planning in a basically hierarchical fashion, using a severely to explore in the search space might be difficult to 
limited (and predetermined) subset of the tactics integrate with tactics that emphasize the learning and 
enumerated above, by and for a single active agent summarization of information derived from the portion of 
satisfying a set of goals completely. The elimination of the search space already explored. However, the major 
these restrictions is a challenge to workers in Artificial payoff in integrating tactics might come from exactly this 
Intelligence. This section will discuss a number of these kind of combination. Developing a problem solver that 

TABLE 1 

Classification of Tactics 
Approach: 

Relationship: 
II 

Learn and Choose 
Summarize New Move 

Order 

pseudo-red. 
generation 

relevant 
backtracking 

disproving 

Hierarchy 
II 

plan repair spec.-purpose 
subplanners 

,t 
I 

Teleology bugging 
pseudo-red. critics regression 

Object 
/I 

relevant constraint 
backtracking satisfaction 

restrictions briefly and suggest, where possible, lines of 
research to ease them. 

Integrating the Tactics 
To date, there has been no successful attempt known to 

this author to integrate a significant number of the tactics 
we have described into a single system. What follows are 
some preliminary thoughts on how such an integration 
might be achieved. 

First of all, the technique of hierarchical planning can be 
applied independently of any of the others. That is, all of 
the other techniques can be applied at each level of detail 
within the hierarchy. A number of interesting problems 
(analogous to those dealt with by the “hierarchical plan 
repair” tactic) would have to be faced in integrating their 
application across levels of the hierarchy. 

Approaches for dealing with each of the types of 
relationships shown in Table 1 can probably be selected 
without major impact on the approaches selected for the 
other relationships. Thus, we can use Table 1 as a menu 
of possible tactics from which various collections can be 
constructed that make sense operating together in a 
problem solver. 
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uses both kinds of technique when appropriate will 
probably require the use of novel control strategies. The 
interesting new results from such an endeavor will derive 
from efforts to employ information developed by one 
tactic in the application of other tactics. 

Flexible Control Structure 
While the tactic of hierarchical planning speeds up the 

problem solving process greatly, it requires that a plan be 
fully developed to the finest detail before it is executed. 
In real-world environments where unexpected events 
occur frequently and the detailed outcome of particular 
actions may vary, creation of a complete plan before 
execution is not appropriate. Rather, the plan should be 
roughed out and its critical segments created in detail. 
The critical segments will certainly include those that must 
be executed first, but also may include other aspects of the 
plan at conceptual “choke points” where the details of a 
subplan may affect grosser aspects of other parts of the 
plan. 

Hayes-Roth et al. [25l have developed a program based 
on a model of problem solving that would produce the 
kind of non-top-down behavior suggested here. Their 
model is based on a Hearsay-II architecture 1261, but could 
probably be implemented using any methodology that 
allowed for explicit analysis of each of the four kinds of 
dependencies described in 

Section III above. Stefik [17] has implemented a system 
that, at least in principle, has the power to produce this 
kind of behavior. His system incorporates a flexible 
means of determining which planning decision to make 
next. His decisions are local ones; should global ones be 
incorporated as well, we might see a means of determining 
dynamically which tactic to employ in a given situation. 

Planning in Parallel for Simultaneous 
Execution 
Problem solvers to date have been written with the idea 

that the plan is to be generated by a single processor and 
will ultimately be executed one step at a time. The 
development of cooperating problem solvers and 
algorithms for execution by multiple effecters will force a 
closer look at the structure of plans and the nature of the 
interactions between actions. 

A solid start has been made in this area. Fikes, Hart, 
and Nilsson [27] proposed an algorithm for partitioning a 
plan among multiple effecters. Smith 1281 developed a 
problem solver that distributes both the plan generation 
and execution tasks. Appelt [291 and Konolige and 
Nilsson 1301 are investigating methods for sharing 
information among independent problem-solvers. 

The pseudo-reduction tactic creates plans that are 
partially ordered with respect to time, and are therefore 
amenable both to planning in parallel by multiple problem 
solvers and to execution in parallel by multiple effecters. 
Corkill [31l is adapting the NOAH [ill pseudo-reduction 
problem solver to use multiple processors in plan 
generation, and Robinson and Wilkins [32] are developing 
techniques to reason about resources shared among 
simultaneous actions. 

Partial Goal Fulfillment 
Problem solvers to date have been designed to fully 

satisfy their goals. As the problems we work with become 
more complex, and as we attempt to integrate problem 
solvers with execution routines to control real-world 
behavior, full goal satisfaction will be impossible. In 
particular, a system that deals with the real world may 
need to execute a partially satisfactory plan and see how 
the world reacts to it before being able to complete the 
next increment of planning. Thus, we must be able to 
plan for the partial satisfaction of a set of goals. This 
implies that a means must be found of prioritizing the 
goals and of recognizing when an adequate increment in 
the planning process has been achieved. 

A PERSPECTIVE 

The problems we have posed have a common theme to 
their solution: increased flexibility in the planning process. 
The metaphor of problem solving as exploration for 
information that was presented above suggests that the 
result of pursuing the problem solving process can lead to 
surprises as great as those encountered in plan execution. 
The plan execution components of problem solving 
systems have been forced to be quite flexible because of 
the surprises from the real world that they had to deal 
with. Therefore, especially as the tactics used in exploring 
for plans become more daring, the lessons that can be 
learned from plan execution can be extremely valuable for 
plan generation. 

This view suggests a direction for future work in 
problem solving: it will become more like incremental 
plan repair. The means of storing and querying state 
description models will have to allow for efficient updating 
when the orders of actions are altered and when new 
actions are inserted in mid-plan. Planning at higher levels 
of abstraction will appear very similar to planning for 
information acquisition during plan execution. 

Therefore, the best research strategy for advancing the 
state of the art in problem solving might well be to focus 
on integrated systems for plan generation, execution, and 
repair. By developing catalogues of plan execution tactics 
and plan repair tactics to accompany this catalogue of plan 
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generation tactics, we can begin to deal with problems 
drawn from rich, interactive environments that have thus 
far been beyond us. I 
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President’s Message 
(continued from page I) 

Parents and friends fret and worry that perhaps too 
much is being expected of you as a new adult. Perhaps, 
AI, you are not as smart as you seem to be, not enough 
brains or experience to go with your good looks Perhaps 
in venturing to attack the big and difficult problems of real 
application you will fall, will cripple yourself. To put it 
bluntly, are you able to hold a job? It’s a rough and 
demanding practical world out there. 

Do you have enough talent to support the adulthood of 
your science? Are there only a few dozen contributors 
clustered in a handful of places, or does your talent run 
deep? Are you gearing up to produce more trained 
specialists to staff your new industry? Are the industry 
and university labs eating your seed corn with a view 
toward the short-run? 

Parents and friends worry too about your sense of 
history, for like most young adults, you approach each new 
task as if the past holds no lessons. Have you learned 
from your many victories that they were mainly triumphs 
of experimental science; that your winning strategy has 
been to test ideas in the medium of programs that run? 
Your work has been most vulnerable to failure when your 
computing resourses have been inadequate For without 
substantial machines for your laboratories, you are like an 
astronomer with too small a telescope. he can see certain 
interesting things, but his horizons are limited. 

In France and Germany, your empirical work is 
inhibited by the heavyhandedness of bureaucracies and 
prominent mathematicians whose entrenched position 
prevents your scientists from obtaining the funds, 
computers, and communications they need to move 
forward England, alas, sleeps, from a dose of pills 
administered by their government, though whether 
accidentally or intentionally is still debated. It sleeps 
restlessly, however, and may soon awake in a burst of 
industrial activity The Japanese perceive your potential for 
application and are moving with their characteristic energy 
and zeal to master your concepts and techniques. 

How fortunate you are, AI, that the path of most 
progress---the building and testing of intelligent 
programs---is also the path of most fun for your scientists. 
Surely some of them entered the field because its concepts 
and methods seemed the best available for modeling 
human cognition But just as surely, most of your 
scientists have entered Al because of the immense 
fascination---the age-old fascination---with the construction 
of inteliigent artifacts Little is spoken of this motive 
because it is regarded by some as base, just as some regard 
as base the idea that science should be fun. But watch the 
$lOOK Chess Prize Competition. Fun and challenge will 
fuel those fires, the money just supplies the focus of 
attention. 

Increasingly our world is a world of information 
processing, and those who do the world’s work are looking 
to computer science and technology for help Much of 
what they need is not numeric or calculational, but 
symbolic and inferential Biology‘? Medicine? Law? 
Management? The information processing needs of most 
professions do not fit the molds that computer science has 
constructed for physical science, engineering and business 
data processing Al, you alone own the mastery of the 
ideas and methods that will be necessary to bring the 
power of symbolic computing to the service of the world’s 
needs. Yes, you can be rich as well as famous. 

Celebrate your Silver Anniversary with joy, AI You 
will have many more, as you earn your place of 
preeminence among the sciences For you carry the seeds 
of human understanding of the greatest importance 
What, precisely, is the nature of tnind and thought? You 
stand with molecular biology, particle physics, and 
cosmology as owners of the best questions of science. 
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