
Earl D. Sacerdoti
Machine Intelligence Corporation

Palo Alto. California 94303

AUTOMATIC PROBLEM SOLVING’

For intelligent computers to be able to interact with the
real world, they must be able to aggregate individual
actions into sequences to achieve desired goals. This
process is referred to as automatic problem solving,
sometimes more casually called automatic planning. The
sequences of actions that are generated are called plans.

Early work in automatic problem-solving focused on
what Newell has called “weak methods ” While these problem-
solving strategies are quite general and are formally
tractable, they are insufficient in practice for solving
problems of any significant complexity. During the last
decade, a number of techniques have been developed for
improving the efficiency of these strategies. Since these
techniques operate within the context of the general
strategies, they are termed here problem-solving tactics.
The bulk of this paper consists of a description of the
problem-solving strategies and a catalogue of tactics for
improving their efficiency.This is followed by an attempt to

‘This is a slight revision of a paper presented at the Sixth International
Joint Conference on Artificial Intelligence, Tokyo, Japan, August 20-24,
1979 The original vetsion was prepared while the author was with SRI
International, Menlo park, California, suppotted by the Defense
Advanced Research Projects Agency under constract N00039-79-C-0118
with the Naval Electronic Systems Command

provide some perspective on and structure to the set of
tactics. Finally, some new directions in problem-solving
research are discussed, and a personal perspective is
provided on where the work is headed: toward greater
flexibility of control and more intimate integration of plan
generation, execution, and repair.

Because problem solving involves exploration of
alternative hypothesized sequences of actions, a symbolic
model of the real world, referred to as a world model, is
used to enable simple simulations of the critical aspects of
the situation to be run as the plans are evolved. As with
all models, the world models used in problem solving are
abstractions or oversimplifications of the world they
model.

What is Needed to Generate Plans
The general function of an automatic problem solving

system, then, is to construct a sequence of actions that
transforms one world model into another. There are three
basic capabilities that a problem solving system must have.
These are:

1. Management of State Description Models - A state
descriptiorz model is a specification of the state of the world
at some time. The facts or relations that are true at any
particular time can be represented as some equivalent of

Al MAGAZINE Winter 1980-81 7

AI Magazine Volume 2 Number 1 (1981) (© AAAI)

predicate calculus formulas. (We shall refer, somewhat
loosely, to these facts and relations as attributes of a state.)
The critical aspect of representation for problem solving is
the need to represent alternative and hypothetical
situations, that is, to characterize the aggregate effects of
alternative sequences of actions as the problem solver
searches for a solution.

Three methods have typically been used for representing
these alternatives. One method has been to include an
explicit state specification in each literal or assertion (as
suggested by McCarthy and Hayes [2l and implemented by
Green [31). Another alternative is to associate each literal
with an implicit data context that can be explicitly
referenced (as in QA4 [4l). A third choice is to have all
the literals that describe the states explicitly tied up in the
control structure of the problem solver (as, for example,
in most problem solvers written in CONNIVER El>.

2. Deductive Machinery - A state description model,
then, contains all the information needed to characterize a
particular state of the world. The information will not all
be explicitly encoded, however, so a deductive engine of
some sort must be provided to allow needed information
to be extracted from a model. The deductions are of two
types: within a particular state (this is where traditional,
“monotonic” deduction systems are used), and across
states (that is, reasoning about the effects of prior actions
in a sequence). The deductive machinery can be viewed
as a question-answering system that allows the problem
solver to retrieve information about a particular state of
the world from the state description model.

3. Action Models - In addition to state description models
and a means of querying them, a problem solver must
have a way of modelling what changes when an action is
applied in an arbitrary state. Thus, an action is described
by a mapping from one state description to another. Such
a mapping is usually referred to as an operator. The
mapping may be specified either by procedures, as in the
problem solvers based on so-called AI languages [61, or by
declarative data structures. In any case, they must specify
at least the expressions that the action will make true in
the world model and the expressions that its execution will
make untrue in the world model. Usually, to help guide
the heuristic search for actions that are relevant to achieve
particular goals, one of the expressions to be made true by
each operator is designated in some way as its “primary
effect .”

The Basic Control Strategy for Plan
Generation
The process of generating a plan of action that achieves

a desired goal state from a given initial state typically
involves a extensive search among alternative sequences.
A number of control strategies for tree search constitute
the basic tools of all problem solving systems.

Problem solving systems usually work backward from
the goal state to find a sequence of actions that could lead
to it from the initial state. This procedure generates a tree
of action sequences, with the goal state at the root,
instances of operators defining the branches, and
intermediate states defining the nodes. A tree search
process of some sort is used to find a path to a node that
corresponds to the initial state. The path from initial state
to goal then defines the plan. Two particular tree search
strategies are discussed here since they are so commonly
used.

The first of these is means-ends analysis, which was the
central search algorithm used by GPS [71 and STRIPS [81.
This strategy works as follows. The “difference” between
the initial and goal states is determined, and that instance
of the particular operator that would most reduce the
difference is chosen.

If this operator is applicable in the initial state, it is
applied, creating a new intermediate state. If the goal is
satisfied in the new state, the search is completed.
Otherwise, the difference between the new state and the
goal state is determined, an operator to most reduce the
new difference is chosen, and the process continues.

If the chosen operator is not applicable, its preconditions
are established as a new intermediate subgoal. An attempt
is made, using the search strategy recursively, to find a
sequence of operators to achieve the subgoal state. If this
can be done, the chosen operator is now applicable and the
search proceeds as described above. If the new subgoal
cannot be achieved, a new instance of an operator to
reduce the difference is chosen and the process continues
as before.

A second important search strategy, used in simple
problem solvers written in the so-called AI languages [61,
is backtracking, which works in the following manner. If
the goal is satisfied in the initial state, a trivial solution has
been found. If not, an operator that, if applied, would
achieve the goal is selected. If it is applicable in the initial
state, it is applied and a solution has been found. If the
chosen operator is not applicable, operators that would
achieve its preconditions are found, and the search
proceeds as before to find plans to render them applicable.
If the search fails, a different candidate operator is chosen
and the process repeats.

This strategy follows a line of action out fully before
rejecting it. It thus permits the search tree to be
represented elegantly; all the active parts of the search tree
can be encoded by the control stack of the search
procedure itself, and all the inactive parts of the search
tree need not be encoded at all. Because of the full search
at each cycle of the process, it is critical that the correct
operator be chosen first almost always. Otherwise, the

8 Al MAGAZINE Winter 1980-81

simplicity of representation offered by this strategy will be
amply repaid by the inefficiency of the search.

As was discussed above, these strategies are insufficient
in practice for solving problems of any significant
complexity. In particular, one of the most costly behaviors
of the basic problem solving strategies is their inefficiency
in dealing with goal descriptions that include conjunctions.
Because there is usually no good reason for the problem
solver to prefer to attack one conjunct before another, an
incorrect ordering will often be chosen. This can lead to
an extensive search for a sequence of actions to try to
achieve subgoals in an unachievable order.

TACTICS
FOR EFFICIENT PROBLEM SOLVING

Hierarchical Planning
The general strategies described above apply a uniform

procedure to the action descriptions and state descriptions
that they are given. Thus, they have no inherent ability to
distinguish what is important from what is a detail.
However, some aspects of almost any problem are
significantly more important than others. By employing
additional knowledge about the ranking in importance of
aspects of the problem description, a problem solver can
concentrate its efforts on the decisions that are critical
while spending less effort on those that are relatively
unimportant.

Information about importance can be used in several
ways. First, the standard strategies can be modified to
deal with the most important (and most difficult to
achieve) subgoals first. The solution to the most
important subgoals often leaves the world model in a state
from which the less important subgoals are still achievable
(if not, the weaker search strategies must be employed as
a last resort). The less important subgoals could
presumably be solved in many ways, some of which would
be incompatible with the eventual solution to the
important subgoals. Thus, this approach constrains the
search where the constraints are important, and avoids
overconstraining it by making premature choices about
how to solve less important aspects of the problem.
Siklossy and Dreussi [9] used an explicit ordering of
subgoal types to guide search.

Another way to focus on the critical decisions first is to
abstract the descriptions of the actions, thereby creating a
simpler problem. This abstracted problem can be solved
first, producing a sequence of abstracted actions. Then
this plan can then be used as a skeleton, identifying critical
subgoals along the way to a solution, around which to
construct a fully detailed plan. This tactic was used in
conjunction with an early version of GPS by Newell,

Shaw, and Simon [71 to find proofs in symbolic logic
(using abstracted operators and state descriptions that
ignored the connectives and the ordering of symbols).

Finally, abstraction can be extended to involve multiple
levels, leading to a hierarchy of plans, each serving as a
skeleton for the problem solving process at the next level
of detail. The search process at each level of detail can
thus be reduced to a sequence of relatively simple
subproblems of achieving the preconditions of the next
step in the skeleton plan from an initial state in which the
previous step in the skeleton plan has just been achieved.
In this way, rather complex problems can be reduced to a
sequence of much shorter, simpler subproblems. Sacerdoti
applied this tactic to robot navigation tasks 1101 and to
more complex tasks involving assembly of machine
components Ill I.

Hierarchical Plan Repair
A side-effect of hierarchical planning is that plans can

possibly be created that appear to be workable at a high
level of abstraction but whose detailed expansions turn out
to be invalid. The basic idea behind the plan repair tactic
is to check, as a higher level plan is being expanded, that
all the intended effects of the sequence of higher-level
actions are indeed being achieved by the collection of
subsequences of lower-level actions. By exploiting the
hierarchical structure of the plan, only a small number of
effects need to be checked for. Various methods for
patching up the failed plan can then be applied. This tactic
was incorporated in a running system by Sacerdoti [ill
and is very similar to a technique called “hierarchical
debugging” articulated by Goldstein 1121 for a program
understanding task.

“Bugging”
Rather than attempt to produce perfect plans on the first

attempt, it can often be more -efficient to produce an initial
plan that is approximately correct but contains some
” bugs,” and subsequently alter the plan to remove the
bugs. By employing additional knowledge about bug
classification and debugging, this approach allows the
decisions made during the problem-solving process about
which action to try next to be made with less effort, since
mistaken decisions can be subsequently fixed.

Sussman, who first employed this tactic in his HACKER
system [13], called it “problem-solving by debugging
almost-right plans.” It is often referred to in the literature
as the “debugging approach” and, indeed, it has spawned
interesting research in techniques for debugging programs
or plans developed both by machines and by people (see,
for example, Sussman [141 and Goldstein and Miller [151>.
Debugging, however, is an integral part of the execution
component of any problem solver. What distinguishes this
approach is a tolerance for introducing bugs while

Al MAGAZINE Winter 1980-81 9

generating the plan, and thus it can more accurately be
called the ‘bugging” approach.

This tactic works by deliberately making assumptions
that oversimplify the problem of integrating multiple
subplans. These assumptions may cause the problem
solver to produce an initial plan with bugs in it. However,
if the oversimplifications are designed properly, then only
bugs of a limited number of types will be introduced, and
relatively simple mechanisms can be implemented to
remedy each expected type of bug.

Special-Purpose Subplanners

Once a particular subgoal has been generated, it may
well be the case that it is of a type for which a special
purpose algorithm, a stronger method than the weak
method of the general-purpose problem solver, can be
brought to bear. For example, in a robot problem, the
achievement of an INROOM goal can be performed by a
route-finding algorithm applied to a connectivity graph
representing the interconnection of rooms, rather than
using more general methods applied to less direct
representations of the rooms in the environment. Such a
special purpose problem
Dreussi [91 to effect
system’s performance.

solver was used by Siklossy and
dramatic improvements in the

Wilkins [161 employs special-purpose subplanners in a
chess problem solver for subgoals such as moving safely to
a given square or checking with a given piece.

Each special-purpose subplanner encodes additional
knowledge about its specialty. To take advantage of it, the
problem solver must incorporate information about how to
recognize the special situation as well.

Constraint Satisfaction
Constraint satisfaction, the derivation of globally

consistent assignments of values to variables subject to
local constraints, is not usually thought of as a problem
solving tactic. While it cannot be used to generate action
sequences, it can play a very important role in particular
subproblems, especially in determining the binding of
variables when there is no clear locally computable reason
to prefer one value over another. From this perspective,
constraint satisfaction can be thought of as a type of
special-purpose subplanner.

Stefik [17] employs constraint satisfaction to assign
values to variables in generating action sequences for
molecular genetics experiments.

Relevant Backtracking
As a correct plan is being searched for, a problem solver

will encounter many choice points at which there are
several alternative steps to be taken. Most problem
solvers employ sophisticated techniques to try to make the
right choices among the alternative action sequences
initially. Alternatively, a problem solver could focus on
sophisticated post-mortem analyses of the information
gained from early attempts that fail. By analyzing the
reasons for the failure of a particular sequence of actions,
the problem solver can determine which action in the
sequence should be modified. This is in contrast with the
straightforward approach of backtracking to the most
recent choice point and trying other alternatives there.
Fahlman [181 developed such a system for planning the
construction of complex block structures. His system
associated a “gripe handler” with each choice point as it
was encountered, and developed a characterization of each
failure when it occurred. When a particular line of action
failed, the gripe handlers would be invoked in reverse
chronological order to see if they could suggest something
specific to do about the failure. The effect of this
mechanism is to backtrack not to the most recent choice
point, but to the relevant choice point.

The tactic of relevant backtracking, which is also
referred to in the literature as dependency-directed or
non-chronological backtracking, was also used in a problem
solver for computer-aided design developed by Latombe
t191.

Disproving
Problem solvers have traditionally been automated

optimists. They presume that a solution to each problem
or subproblem can be found if only the right combination
of primitive actions can be put together. Thus, the
impossibility of achieving a given goal or subgoal state can
only be discovered after an exhaustive search of all the
possible combinations of potentially relevant actions It
may well be the case that a pessimistic analysis of a
particular goal, developing knowledge additional to that
employed in building action sequences, would quickly
show the futility of the whole endeavor. This procedure
can be of particular value in evaluating a set of conjunctive
subgoals to avoid working on any of them when one can
be shown to be impossible. Furthermore, even if a goal
cannot be shown to be impossible, the additional
knowledge might suggest an action sequence that would
achieve the goal. Siklossy and Roach 1201 developed a
system that integrated attempts to achieve goals with
attempts to prove their impossibility.

Goal Regression
The problem-solving tactics we have discussed so far all

work by modifying, in one way or another, the sequence
of actions being developed to satisfy the goals. Goal
regression modifies the goals as well. It relies on the fact
that, given a particular goal and a particular action, it is

10 Al MAGAZINE Winter 1980-81

possible to derive a new goal such that if the new goal is
true before the action is executed, then the original goal
will be true after the action is executed. The computation
of the new goal, given the original goal and the action, is
called regressing the goal over the action.

As an example, let us suppose the overall goal consists
of two conjunctive subgoals. This tactic first tries to
achieve the second goal in a context in which a sequence
of actions has achieved the first goal (similarly to the
bugging tactic). If this fails, the second goal is regressed
back across the last action that achieved the first goal.
This process generates a new goal that describes a state
such that if the last action were executed in it, would lead
to a state in which the original second goal were true. If
the regressed goal can be achieved without destroying the
first goal, the tactic has succeeded. If not, the regression
process continues.

This tactic requires knowledge of the inverse effects of
each operator. That is, in addition to knowing how the
subsequent application of an operator changes a world
model, the system must know how the prior application of
the operator affects a goal.

The goal regression technique was developed
independently by Waldinger 1211 and Warren [22l.

Pseudo-Reduction
One of the most costly behaviors of problem solving

systems is their inefficiency in dealing with goal
descriptions that include conjunctions, as was noted at the
end of Section 1. Ordering the conjuncts by importance,
as described in the subsection on hierarchical planning
above, can help, but there may still be multiple conjuncts
of the same importance. One approach to the problem of
selecting an order for the conjuncts is to ignore ordering
them initially, finding a plan to achieve each conjunct
independently. Thus, the conjunctive problem is reduced
to several simpler, nonconjunctive problems. Of course,
the plans to solve the reduced problems must then be
integrated, using knowledge about how plan segments can
be intertwined without destroying their important effects.

This tactic creates plans that are not linear orderings of
actions with respect to time, but are rather partial
orderings, This renders the cross-state question-answering
procedure described in Section 1.1 more complicated than
for other tactics.

By avoiding premature commitments to particular
orderings of subgoals, this tactic eliminates much of the
backtracking typical of problem solving systems.
Pseudo-reduction was developed by Sacerdoti [Ill and has
been applied to robot problems, assembly of
electromechanical equipment, and project planning 1231.
London 1241 has integrated aspects of goal regression and
plan repair into a problem-reduction problem solver.

WHAT’S GOING ON?

We have just finished a brief (heuristically) guided tour
of some of the problem-solving tactics used recently.
They constitute a diverse bag of tricks for improving the
efficiency of the problem solving process. In this section
we focus on the underlying reasons why these techniques
seem to help. Problem-solving is often described as
state-space search, or as exploration of a tree of possible
action sequences. We can find some structure for the bag
of tactical tricks by remembering that search or exploration
involves not only movement to new (conceptual)
locations, but discovery and learning as well.

The problem solver begins its work with information
about only the initial state and the goal state. It must
acquire information about the intermediate states as it
explores them. It must summarize this information for
efficient use during the rest of the problem-solving
process, and it must take advantage of all possible
information that can be extracted from each intermediate
state. This can require considerable computational
resources. In the simplest search strategies, the
information may be simply a number representing the
value of the heuristic evaluation function applied at that
point. It may be much more, however. It may include a
detailed data base describing the situation, information
about how to deal with classes of anticipated subsequent
errors, and dependency relationships among the attributes
describing the situation. All this information is typically
stored in intermediate contexts in one of the forms
discussed in the first section of this paper.

The information learned during the exploration process
can be broken down into four kinds of relationships
among the actions in a plan. These are.

order relationships-the sequencing of the actions in
the plan;

hierarchical relationships-the links between each action
at one level and the meta-actions above it and the more
detailed actions below it;

teleological relationships-the purposes for which each
action has been placed in the plan; and

object relationships-the dependencies among the objects
that are being manipulated (which correspond to
dependencies among the parameters or variables in
the operators).

These relationships can be explicated and understood
only by carrying out the instantiation of new points in the
search space. It is thus of high value to a problem solver
to instantiate and learn about new intermediate states. As
a simple example of a problem-solving tactic that displays
incremental learning, consider relevant backtracking. By

Al MAGAZINE Winter 1980-81 11

following initial paths through the search tree, the problem
solver learns which choice points are critical. Another
clear example is constraint satisfaction, in which
restrictions on acceptable bindings for variables are
aggregated as search progresses.

The difficulty is that, as with all learning systems, the
acquisition of new information is expensive. The
generation of each new state is a major time consumer in
many problem solving systems. Furthermore, the
generation of each intermediate state represents a
commitment to a particular line of action by the problem
solver. Since problems of any non-toy level of complexity
tend to generate very bushy search trees, a breadth-first
search strategy is impossible to use. Therefore, once a line
of action has begun to be investigated, a problem-solving
system will tend to continue with it. It is thus of high
value to a problem solver, whenever possible, to avoid
generating intermediate states not on the solution path.
Those states that are generated must represent a good
investment for the problem solver.

Thus, there are two opposing ways to improve the
efficiency of a problem solver. The first is to employ a
relatively expensive evaluation function and to work hard
to avoid generating states not on the eventual solution
path. The second is to use a cheap evaluation function, to
explore lots of paths that might not work out, but to
acquire information about the interrelationships of the
actions and objects in the world in the process. This
information can then be used to guide (efficiently)
subsequent search.

Each of the tactics described in the previous section
strikes a particular balance between the value of
instantiating new intermediate states and the cost of
commitment to particular lines of action. While none of
the tactics use one approach exclusively, each can be
categorized by the one it emphasizes. Furthermore, each
can be distinguished according to one of the four types of
relationships they depend on or exploit. Table 1 displays a
candidate categorization.

None of the tactics fit as neatly into the classification as
the table suggests, because they typically have been
embodied in a complete problem solving system and so
must deal with at least some aspects of many of the
categories.

WHAT’S NEXT?

The current state of the art in plan generation allows for Tactics that emphasize the clever selection of new paths
planning in a basically hierarchical fashion, using a severely to explore in the search space might be difficult to
limited (and predetermined) subset of the tactics integrate with tactics that emphasize the learning and
enumerated above, by and for a single active agent summarization of information derived from the portion of
satisfying a set of goals completely. The elimination of the search space already explored. However, the major
these restrictions is a challenge to workers in Artificial payoff in integrating tactics might come from exactly this
Intelligence. This section will discuss a number of these kind of combination. Developing a problem solver that

TABLE 1

Classification of Tactics
Approach:

Relationship:
II

Learn and Choose
Summarize New Move

Order

pseudo-red.
generation

relevant
backtracking

disproving

Hierarchy
II

plan repair spec.-purpose
subplanners

,t
I

Teleology bugging
pseudo-red. critics regression

Object
/I

relevant constraint
backtracking satisfaction

restrictions briefly and suggest, where possible, lines of
research to ease them.

Integrating the Tactics
To date, there has been no successful attempt known to

this author to integrate a significant number of the tactics
we have described into a single system. What follows are
some preliminary thoughts on how such an integration
might be achieved.

First of all, the technique of hierarchical planning can be
applied independently of any of the others. That is, all of
the other techniques can be applied at each level of detail
within the hierarchy. A number of interesting problems
(analogous to those dealt with by the “hierarchical plan
repair” tactic) would have to be faced in integrating their
application across levels of the hierarchy.

Approaches for dealing with each of the types of
relationships shown in Table 1 can probably be selected
without major impact on the approaches selected for the
other relationships. Thus, we can use Table 1 as a menu
of possible tactics from which various collections can be
constructed that make sense operating together in a
problem solver.

12 Al MAGAZINE Winter 1980-81

uses both kinds of technique when appropriate will
probably require the use of novel control strategies. The
interesting new results from such an endeavor will derive
from efforts to employ information developed by one
tactic in the application of other tactics.

Flexible Control Structure
While the tactic of hierarchical planning speeds up the

problem solving process greatly, it requires that a plan be
fully developed to the finest detail before it is executed.
In real-world environments where unexpected events
occur frequently and the detailed outcome of particular
actions may vary, creation of a complete plan before
execution is not appropriate. Rather, the plan should be
roughed out and its critical segments created in detail.
The critical segments will certainly include those that must
be executed first, but also may include other aspects of the
plan at conceptual “choke points” where the details of a
subplan may affect grosser aspects of other parts of the
plan.

Hayes-Roth et al. [25l have developed a program based
on a model of problem solving that would produce the
kind of non-top-down behavior suggested here. Their
model is based on a Hearsay-II architecture 1261, but could
probably be implemented using any methodology that
allowed for explicit analysis of each of the four kinds of
dependencies described in

Section III above. Stefik [17] has implemented a system
that, at least in principle, has the power to produce this
kind of behavior. His system incorporates a flexible
means of determining which planning decision to make
next. His decisions are local ones; should global ones be
incorporated as well, we might see a means of determining
dynamically which tactic to employ in a given situation.

Planning in Parallel for Simultaneous
Execution
Problem solvers to date have been written with the idea

that the plan is to be generated by a single processor and
will ultimately be executed one step at a time. The
development of cooperating problem solvers and
algorithms for execution by multiple effecters will force a
closer look at the structure of plans and the nature of the
interactions between actions.

A solid start has been made in this area. Fikes, Hart,
and Nilsson [27] proposed an algorithm for partitioning a
plan among multiple effecters. Smith 1281 developed a
problem solver that distributes both the plan generation
and execution tasks. Appelt [291 and Konolige and
Nilsson 1301 are investigating methods for sharing
information among independent problem-solvers.

The pseudo-reduction tactic creates plans that are
partially ordered with respect to time, and are therefore
amenable both to planning in parallel by multiple problem
solvers and to execution in parallel by multiple effecters.
Corkill [31l is adapting the NOAH [ill pseudo-reduction
problem solver to use multiple processors in plan
generation, and Robinson and Wilkins [32] are developing
techniques to reason about resources shared among
simultaneous actions.

Partial Goal Fulfillment
Problem solvers to date have been designed to fully

satisfy their goals. As the problems we work with become
more complex, and as we attempt to integrate problem
solvers with execution routines to control real-world
behavior, full goal satisfaction will be impossible. In
particular, a system that deals with the real world may
need to execute a partially satisfactory plan and see how
the world reacts to it before being able to complete the
next increment of planning. Thus, we must be able to
plan for the partial satisfaction of a set of goals. This
implies that a means must be found of prioritizing the
goals and of recognizing when an adequate increment in
the planning process has been achieved.

A PERSPECTIVE

The problems we have posed have a common theme to
their solution: increased flexibility in the planning process.
The metaphor of problem solving as exploration for
information that was presented above suggests that the
result of pursuing the problem solving process can lead to
surprises as great as those encountered in plan execution.
The plan execution components of problem solving
systems have been forced to be quite flexible because of
the surprises from the real world that they had to deal
with. Therefore, especially as the tactics used in exploring
for plans become more daring, the lessons that can be
learned from plan execution can be extremely valuable for
plan generation.

This view suggests a direction for future work in
problem solving: it will become more like incremental
plan repair. The means of storing and querying state
description models will have to allow for efficient updating
when the orders of actions are altered and when new
actions are inserted in mid-plan. Planning at higher levels
of abstraction will appear very similar to planning for
information acquisition during plan execution.

Therefore, the best research strategy for advancing the
state of the art in problem solving might well be to focus
on integrated systems for plan generation, execution, and
repair. By developing catalogues of plan execution tactics
and plan repair tactics to accompany this catalogue of plan

Al MAGAZINE Winter 1980-81 13

generation tactics, we can begin to deal with problems
drawn from rich, interactive environments that have thus
far been beyond us. I

References

1. A. Newell, “Heuristic Programming: Ill-Structured
Problems,” in J. Aronofsky ted.) Progress in Operations
Research, Vol. III, pp. 360- 414 (Wiley, New York, 1969).

2. J. McCarthy and P. Hayes, “Some Philosophical
Problems from the Standpoint of Artificial Intelligence,”
Machine Intelligence 4, B. Meltzer and D. Michie, eds., pp.
463-502 (American Elsevier, New York, 1969).

3. C. Green, “The Application of Theorem-Proving to
Question-Answering Systems,” Doctoral dissertation, Elec.
Eng. Dept., Stanford Univ., Stanford, CA, June 1969.
Also printed as Stanford Artificial Intelligence Project
Memo AI-96 (June 1969).

4. R.F. Rulifson, J.A. Derksen and R. J. Waldinger “QA4.
A Procedural Calculus for Intuitive Reasoning,” Artificial
Intelligence Center, Technical Note 73, Stanford Research
Institute, Menlo Park, California (November 1972).

5. D.V. McDermott and G.J. Sussman, “The
CONNIVER Reference Manual,” MIT, Artificial
Intelligence Lab., Memo No. 259, Cambridge, MA (May
1972).

6. D.G. Bobrow and B. Raphael, “New Programming
Languages for Artificial Intelligence,” Computing Surveys,
Vol. 6, No. 3 (Sept. 1974).

7. G.W. Ernst and A Newell GPS: A Case Study in
Generality and Problem Solving (Academic Press, New
York, 1969).

8. R.E. Fikes and N.J. Nilsson, “STRIPS: A New
Approach to the Application of Theorem Proving to’
Problem Solving,” Artificial Intelligence, Vol. 2, No. 3-4,
pp. 189-208 (Winter 1971).

9. L. Siklossy and J. Dreussi, “An Efficient Robot Planner
Which Generates Its Own Procedures,” Proc. Third
International Joint Conference on Arttjicial Intelligence,
Stanford, California, (August 1973).

10. ED. Sacerdoti, “Planning in a Hierarchy of
Abstraction Spaces,” Arttjicial Intelligence, Vol. 5 No. 2, pp.
11.5-135 (Summer 1974).

11. E.D. Sacerdoti, A Structure for Plans and Behavior,
(Elsevier North-Holland, New York, 1977).

12. I.P. Goldstein, “Understanding Simple Picture
Programs,” Tech. Note AI-TR-294, Artificial Intelligence
Laboratory, MIT, Cambridge, MA (September 1974).

13. G.J. Sussman, A Computer Model of Skill Acquisition,
(American Elsevier, New York, 1975).

14. G.J. Sussman, “The Virtuous Nature of Bugs,” Proc.
AISB Summer Cor?ference, pp. 224-237 (July 1974).

15. M.L. Miller and I.P. Goldstein, “Structured Planning
and Debugging,” Proc. Ftfth International Joint Conference
on Artt$cial Intelligence, pp. 773-779, Cambridge,
Massachusetts (August 1977).

16. D. Wilkins, “Using Plans in Chess,” Proc. Sixth
International Joint Conference on Artificial Intelligence,
Tokyo, Japan (August 1979).

17. M.J. Stefik, “Planning with Constraints,” Computer
Science Department Report No. STAN-CS-80-784,
Stanford University (January 1980).

18. S.E. Fahlman, “A Planning System for Robot
Construction Tasks,” Arttjicial Intelligence, Vol. 5, No. 1,
pp. l-49 (Spring 1974).

19. J.C. Latombe, “Artificial Intelligence in
Computer-Aided Design: the TROPIC System,” in J.J.
Allen (ed.), CAD Systems (Elsevier North-Holland, New
York, 1977).

20. L. Siklossy and J. Roach, “Collaborative
Problem-Solving between Optimistic and Pessimistic
Problem Solvers,” Proc. 1FIP Congress 74, pp. 814-817
(North-Holland Publishing Company, 1974).

21. R. Waldinger, “Achieving Several Goals
Simultaneously,” in E.W. Elcock and D. Michie (eds.)
Machine Intelligence 8, pp. 94-136 (Ellis Horwood Limited,
Chichester, England, 1977).

22. D.H.D Warren, “WARPLAN: A System for
Generating Plans,” Department of Computational Logic,
Memo No. 76, University of Edinburgh, Edinburgh (June
1974).

23. A. Tate, “Generating Project Networks,” Proc. F@h
International Joint Conjerence on Artijicial Intelligence, pp.
888-893, Cambridge, Massachusetts (August 1977).

24. P. London, “A Dependency-Based Modelling
Mechanism for Problem Solving,” Computer Science
Department Technical Report TR-589, University of
Maryland, College Park, Maryland (November, 1977).

14 Al MAGAZINE Winter 1980-81

25. B. Hayes-Roth, F. Hayes-Roth, S. Rosenschein, and
S. Cammarata, “Modeling Planning as an Incremental,
Opportunistic Process,” Proc. Sixth International Joint
Conference on Art$cial Intelligence, Tokyo, Japan (August
1979).

26. V.R. Lesser and L.D. Erman, “A Retrospective View
of the Hearsay-II Architecture,” Proc. Fijth International
Joint Conference on Al tl$cial Intelligerzce, pp. 790-800,
Cambridge, Massachusetts (August 1977).

27. R.E. Fikes, P.E.Hart, and N.J. Nilsson, “Some New
Directions in Robot Problem Solving,” in B. Meltzer and
D. Michie (eds.) Machine Intelligence 7, pp. 405-430
(Edinburgh Univ. Press, Edinburgh, 1972).

28. R.G. Smith, “A Framework for Distributed Problem
Solving,” Proc. Sixth International Joint Conference 011
ArtijTcial Intelligence, Tokyo, Japan (August 1979).

29. D. E. Appelt, “A Planner for Reasoning about
Knowledge and Action,” Proc. First National Conjkence on
Artgcial Zjztelligence, Stanford, California (August 1980).

30 K. Konolige and N. J. Nilsson, “Multiple-Agent
Planning Systems,” Proc. First National Conference on
ArtijTcial Intelligence, Stanford, California (August 1980).

31. D.D. Corkill, “Hierarchical Planning in a Distributed
Environment,” Proc. Sixth International Joint Cocference on
ArtiJcial Intelligence, Tokyo, Japan (August 1979).

32. A.E. Robinson and D.E. Wilkins, “Representing
Knowledge in an Interactive Planner,” Proc. First Natiorlal
Coqference 011 Art$cial Intelligence, Stanford, California
(August 1980)

President’s Message
(continued from page I)

Parents and friends fret and worry that perhaps too
much is being expected of you as a new adult. Perhaps,
AI, you are not as smart as you seem to be, not enough
brains or experience to go with your good looks Perhaps
in venturing to attack the big and difficult problems of real
application you will fall, will cripple yourself. To put it
bluntly, are you able to hold a job? It’s a rough and
demanding practical world out there.

Do you have enough talent to support the adulthood of
your science? Are there only a few dozen contributors
clustered in a handful of places, or does your talent run
deep? Are you gearing up to produce more trained
specialists to staff your new industry? Are the industry
and university labs eating your seed corn with a view
toward the short-run?

Parents and friends worry too about your sense of
history, for like most young adults, you approach each new
task as if the past holds no lessons. Have you learned
from your many victories that they were mainly triumphs
of experimental science; that your winning strategy has
been to test ideas in the medium of programs that run?
Your work has been most vulnerable to failure when your
computing resourses have been inadequate For without
substantial machines for your laboratories, you are like an
astronomer with too small a telescope. he can see certain
interesting things, but his horizons are limited.

In France and Germany, your empirical work is
inhibited by the heavyhandedness of bureaucracies and
prominent mathematicians whose entrenched position
prevents your scientists from obtaining the funds,
computers, and communications they need to move
forward England, alas, sleeps, from a dose of pills
administered by their government, though whether
accidentally or intentionally is still debated. It sleeps
restlessly, however, and may soon awake in a burst of
industrial activity The Japanese perceive your potential for
application and are moving with their characteristic energy
and zeal to master your concepts and techniques.

How fortunate you are, AI, that the path of most
progress---the building and testing of intelligent
programs---is also the path of most fun for your scientists.
Surely some of them entered the field because its concepts
and methods seemed the best available for modeling
human cognition But just as surely, most of your
scientists have entered Al because of the immense
fascination---the age-old fascination---with the construction
of inteliigent artifacts Little is spoken of this motive
because it is regarded by some as base, just as some regard
as base the idea that science should be fun. But watch the
$lOOK Chess Prize Competition. Fun and challenge will
fuel those fires, the money just supplies the focus of
attention.

Increasingly our world is a world of information
processing, and those who do the world’s work are looking
to computer science and technology for help Much of
what they need is not numeric or calculational, but
symbolic and inferential Biology‘? Medicine? Law?
Management? The information processing needs of most
professions do not fit the molds that computer science has
constructed for physical science, engineering and business
data processing Al, you alone own the mastery of the
ideas and methods that will be necessary to bring the
power of symbolic computing to the service of the world’s
needs. Yes, you can be rich as well as famous.

Celebrate your Silver Anniversary with joy, AI You
will have many more, as you earn your place of
preeminence among the sciences For you carry the seeds
of human understanding of the greatest importance
What, precisely, is the nature of tnind and thought? You
stand with molecular biology, particle physics, and
cosmology as owners of the best questions of science.

Al MAGAZINE Winter 1980-81 15

