
to clarify and define
what design is from
a theoretical point
of view, which is a
role of the descrip-
tive model. However,
descriptive models
are not necessarily
helpful in directly
deriving either the
architecture of intel-
ligent CAD or the
knowledge repre-
sentation for intelli-
gent CAD. For this
purpose, we need a
computable design
process model that
should coincide, at
least to some extent,

with a cognitive model that explains actual
design activities.

One of the major
problems in devel-
oping so-called
intelligent comput-
er-aided design
(CAD) systems (ten
Hagen and Tomiya-
ma 1987) is the 
representation of
design knowledge,
which is a two-part
process: the repre-
sentation of design
objects and the 
representation of
design processes.
We believe that
intelligent CAD sys-
tems will be fully
realized only when
these two types of representation are inte-
grated. Progress has been made in the repre-
sentation of design objects, as can be seen,
for example, in geometric modeling; howev-
er, almost no significant results have been
seen in the representation of design process-
es, which implies that we need a design
theory to formalize them.

According to Finger and Dixon (1989),
design process models can be categorized
into a descriptive model that explains how
design is done, a cognitive model that
explains the designer’s behavior, a prescrip-
tive model that shows how design must be
done, and a computable model that express-
es a method by which a computer can
accomplish a task. A design theory for intelli-
gent CAD is not useful when it is merely
descriptive or cognitive; it must also be com-
putable. We need a general model of design
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Modeling Design Processes

Hideaki Takeda, Paul Veerkamp, 
Tetsuo Tomiyama, and Hiroyuki Yoshikawa

This article discusses building a computable
design process model, which is a prerequisite for
realizing intelligent computer-aided design sys-
tems. First, we introduce general design theory,
from which a descriptive model of design pro-
cesses is derived. In this model, the concept of
metamodels plays a crucial role in describing the
evolutionary nature of design. Second, we show
a cognitive design process model obtained by
observing design processes using a protocol anal-
ysis method. We then discuss a computable
model that can explain most parts of the cogni-
tive model and also interpret the descriptive
model. In the computable model, a design pro-
cess is regarded as an iterative logical process
realized by abduction, deduction, and circum-
scription. We implemented a design simulator
that can trace design processes in which design
specifications and design solutions are gradually
revised as the design proceeds.
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(Interested readers can refer to Yoshikawa
[1981] and Tomiyama and Yoshikawa [1987]
for detailed discussions. In this article, we
only present the theorems.)

Design in the Ideal Knowledge

GDT deals with concepts that only exist in
our mental recognition. In this sense, GDT is
an abstract theory about knowledge. We
make a distinction between an entity and an
entity concept. An entity is a concrete existing
thing, and an entity concept is its abstract
mental impression conceived by a human
being. An entity concept might be associated
with its properties, such as color, size, func-
tion, and place. These properties are called
abstract concepts and include attributes.

Axiom 1 (axiom of recognition): Any
entity can be recognized or described by
attributes, other abstract concepts, or both.

Axiom 2 (axiom of correspondence): The
entity set S’ and the set of entity concepts
(ideal) S have one-to-one correspondence.

Axiom 3 (axiom of operation): The set of
abstract concepts is a topology of the set of
entity concepts.

Axiom 2 guarantees the existence of a
superhuman who knows everything. In other
words, it defines an ideal, ultimate state at
which our knowledge should aim. Axiom 3
signifies that it is possible to logically operate
abstract concepts as if they were just ordinary
mathematical sets. Accordingly, we get set
operations, such as intersection, union, and
negation.

We can then introduce ideal knowledge
that knows all the elements of the entity set
and that can describe each element by abstract
concepts without ambiguity. Theorem 1
mathematically describes this situation.

Theorem 1: The ideal knowledge is a Haus-
dorff space.

In GDT, a design specification is given as
an abstract concept that the design solution
must belong to. Thus, the specifications can
be given by describing an entity with only
abstract concepts (for example, functionally).
The function space is the entity concept set
with a topology of functions, and the
attribute space is the one with a topology of
attributes. Therefore, a design specification is a
point in the function space, and a design solu-
tion is a point in the attribute space. The most
significant result of having the ideal knowl-
edge that can be further proven from the
three axioms is that design as a mapping
from the function space to the attribute space
successfully terminates when the specifica-
tions are described.

We start this article with the descriptive
model. We present our descriptive theory
called general design theory (GDT). It is a
mathematical formulation of design processes
and explains how design is conceptually per-
formed in terms of knowledge manipulation.
Next, we show a more concrete descriptive
model called the evolutionary design process
model. It is based on GDT and shows how
the design object is manipulated during the
design process in an intelligent CAD environ-
ment. We then analyze design processes
based on experimental results. We conducted
design experiments to extract the features of
design processes from which a cognitive
design model was derived.

These discussions lead to a logical formal-
ization of design processes in terms of a
design process model that is not only consis-
tent with the descriptive and cognitive
models but also expected to be computable.
In this model, a design process is regarded as
a logical process in which both the theory
(that is, axioms) and the goal are gradually
revised as the design proceeds, using abduc-
tion, deduction, and circumscription. Abduc-
tion is used to expand the designer’s thought,
deduction is used when the designer wants to
get all obtainable facts from currently avail-
able design knowledge and design object
descriptions, and circumscription is applied to
solve an inconsistency found during deduc-
tive reasoning. We developed a design simu-
lator to demonstrate that this model is
computable and also appropriate to represent
design processes. An example is shown in
which given design knowledge and specifica-
tions, the design simulator logically simulates
a design process based on protocol data
obtained by a real design experiment. In the
last section, we discuss the relationship
between the descriptive, cognitive, and com-
putable design process models.

General Design Theory
GDT’s major achievements are a mathemati-
cal formulation of the design process and a
justification of knowledge representation
techniques in a certain situation (Yoshikawa
1981; Tomiyama and Yoshikawa 1987). GDT
is a descriptive model that tries to explain
how design is conceptually performed in
terms of knowledge manipulation. In GDT, a
design process is regarded as a mapping from
the function space to the attribute space,
both of which are defined over the entity
concept set. Based on axiomatic set theory,
we can mathematically derive interesting the-
orems that can well explain a design process.

GDT is a
descriptive
model that

tries to
explain how

design is 
conceptually
performed in

terms of
knowledge

manipulation.
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Theorem 2: In the ideal knowledge, the
design solution is immediately obtained after
the specifications are described.

Because we know everything perfectly in
the ideal knowledge, when we finish describ-
ing the specifications, they converge to a
point in the function space. Because the func-
tion space and the attribute space are built on
the same entity concept set, this point (that
is, an entity concept) can also be considered
in the attribute space. The ideal knowledge is
also perfect to describe an entity concept in
the attribute space. Thus, the design solution
will be fully described by attributes; that is,
the design in the ideal knowledge is a map-
ping process from the function space to the
attribute space (figure 1).

Design in the Real Knowledge

The situation in the ideal knowledge is not
the case in the real design, and we need to
consider the following characteristics: First,
design is not a simple mapping process but
rather a stepwise refinement process where
the designer seeks the solution that satisfies
the constraints. Second, the concept of func-
tion is difficult to objectively formalize
because it includes a sense of value that can
vary from person to person. Instead, we use
behavior to deal with function. Third, the
ideal knowledge does not take physical con-
straints into consideration, and it can produce
design solutions such as perpetual machines.

These restrictions are considered in the real
knowledge, where design is regarded as a pro-
cess in which the designer builds the goal and
tries to satisfy the specifications without vio-
lating physical constraints. To formalize the

real knowledge, we first define a physical law
as a description about the relationship between
physical quantities of entities and the field.
The concept of physical laws is one of the
abstract concepts formed when one looks at a
physical phenomenon as a manifestation of
physical laws. Physical laws constrain entities
in the real world; in other words, any feasible
entity must be explicable by physical laws.
This fact can be proven as a theorem.

Theorem 3: The set of physical law con-
cepts is a base of the attribute concept topolo-
gy of the set of (feasible) entity concepts.

This theorem states that attributes can be
measured by using physical laws. An interest-
ing fact about the real knowledge is that we
can prove finiteness or boundedness of our
knowledge with the following hypothesis.

Hypothesis: Finite subcoverings exist for
any coverings of the set of feasible entity con-
cepts made of sets chosen from the set of
physical law concepts.

Basically, this hypothesis says that a feasible
entity is explicable not by an infinite number
but a finite number (as small as possible) of
physical laws. From this hypothesis, we can
prove an interesting theorem that explains
that an attribute has a value if it is possible at
all to measure the distance. We can also
mathematically prove theorems 4 and 5.

Theorem 4: The real knowledge is a com-
pact Hausdorff space.

Theorem 5: In the real knowledge, if we
can produce a directed subsequence from the
given design specifications, this subsequence
converges to a single point.

Theorem 5 indicates that in the real knowl-
edge, a design process can be regarded as a
convergence process if we can pick up some
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Figure 1. Design Process in the Ideal Knowledge.
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(but not necessarily all) specifications that
seem to yield meaningful solutions.

Evolutionary Design Process Model

The next step is to formalize design processes
in the real knowledge. For this purpose, the
concept of metamodels is formally intro-
duced, where a metamodel is a finite set of
attributes, and the metamodel set is the set of
all metamodels. Such a metamodel can be
evolved; that is, we mean to increase the
number of attribute concepts.

Theorem 6: If we evolve a metamodel, we
get an entity concept as the limit of evolution.

Theorem 6 is a corollary to theorem 5, and
it does not guarantee that we obtain a design
solution as the result of this evolution. How-
ever, if we restrict ourselves to consider func-
tion only in terms of behavior, theorem 7
can be proven.

Theorem 7: If concepts explained by phys-
ical law concepts are chosen for the meta-
model, then a design solution exists that is
an element of this metamodel.

Theorem 7 guarantees that we are able to
design as long as specifications are given in
terms of (physical) behaviors and solutions
are described in terms of attributes that can
be measured by physical laws. Furthermore,
solutions contain only those attributes that
can be physically realized; in other words, we
are not allowed to consider objects that con-
tradict physical laws. Figure 2 depicts a
design process in the real knowledge in
which we design, in fact, physical behaviors

of the design object.
Theorem 6 also indicates that a design

process is a stepwise transformation process,
and solutions are obtained in a gradual
refinement manner because the metamodel
can be evolved only by increasing the
number of attributes. In the ideal knowledge,
design is a direct mapping process from the
function space to the attribute space, but in
the real knowledge, design is a stepwise, evo-
lutionary transformation process. The differ-
ence is elaborated in the next section.

Descriptive Design 
Process Model

In this section, we present a descriptive
design process model that shows design as a
gradual transformation from the function
space to the attribute space. This model is
used to build a framework that directs the
design process to be implemented in an
intelligent CAD system. Knowledge about
the design process is embedded in the frame-
work. Thus, the system is always informed
about the current stage of the design process
and the current state of the design object.
The descriptive design process model is pre-
sented in system-oriented terminology. The
knowledge about how to perform the design
process and which tools are applicable at a
certain instant is denoted by means of sce-
narios. These scenarios represent design
schemes that describe what kind of actions
must be carried out at a specific phase of the
design process. For each phase of the design
process, there is a different set of scenarios.

The descriptive model is used as a basis for
developing an intelligent CAD system, and
the computable model, discussed later, simu-
lates the reasoning aspect of design. Both of
them can be implemented on a computer.
However, the descriptive model is meant as a
guide to discuss the architecture of an intelli-
gent CAD system, and the computable model
is more interesting for illustrating that design
as a reasoning process can be performed by a
computer.

From Specification to Solution

We use GDT as a basis for giving a descriptive
design process model. The basic ideas behind
the descriptive design process model are
derived from the evolutionary design process
model, as follows: First, from the given func-
tional specifications, a candidate for the
design solution is selected and refined in a
stepwise manner until a complete solution is
obtained. This approach is used rather than

Figure 2.  Design Process in the Real Knowledge.
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trying to directly obtain the solution from the
specifications because a nontrivial design
problem involves a complex object with a
multitude of parts. Second, the design process
is regarded as an evolutionary process that
transfers the model of the design object from
one state to another, gradually obtaining a
more detailed description. The number of
attributes grows as the design process pro-
ceeds, and a growing number of the function-
al specifications are met. Finally, to evaluate
the current state of the design object model,
various interpretations of the design object
model need to be derived to see whether the
object satisfies the specifications.

We call these interpretations of the design
object model contexts. Contexts allow a
designer to model the current state of the
design object in a certain environment; that
is, they represent an aspect model. More
information about the design object is
obtained through these contexts, and hence,
the number of attributes grows. Contexts are
created by means of scenarios that contain
the design knowledge and data necessary to
build an aspect model. Scenarios perform the
reasoning about a context, and they lead the
dialogue with the designer.

Stepwise Refinement of Metamodel

Considering GDT, a designer starts with the
functional specification of a design object and
continues the design process until a design
solution is obtained. During this process, the
design object model is refined in a stepwise
manner. The central description of the design
object is regarded as metamodel in GDT because
it is used during the design process as a central
model from which aspect models are derived.

A metamodel is a description of the design
object that is independent of a context. It
contains all entities the design object is com-
posed of, and it includes the relationships
and dependencies among these entities. Data
that are used in one of the contexts derived
from the metamodel are stored apart from the
metamodel. For instance, geometric data of
the design object are not found in the meta-
model but in a geometric aspect model.

The stepwise refinement process shown in
figure 3 behaves as follows: At a certain stage
of the design process, the metamodel Mi-1 is
the current, incomplete description of the
design object. To get a detailed description,
an aspect model is derived from the meta-
model. Through this aspect model, some new
information about the design object is
obtained. After this refinement, the new
information from the aspect model is merged

into the metamodel Mi-1. If the merge is suc-
cessful—that is, the new information is con-
sistent with the current Mi-1—then the result
of the merge is a new state of the metamodel,
Mi. This process continues, obtaining Mi+1,
and so on, until the design object model
finally becomes a complete and satisfactory
description of the desired artifact. Here,  com-
plete means satisfying all initial requirements.
As a matter of fact, a design can never be
complete; something can always be improved
or made cheaper. In this context, the term
complete has a rather subjective meaning.

Metamodel Evolution Scheme

The descriptive design process model, as dis-
cussed so far, gives a global outline of the
design process without going into details. We
now focus on how to transfer from one state
of the metamodel to the next; that is, how do
we perform a design step? Here, we elaborate
on the concept of a context. Through the cre-
ation of a context, the designer provides an
interpretation of metamodel in a certain envi-
ronment; that is, s/he generates an aspect
model. For each design step, an associated
scenario exists that creates a context that the
design object is modeled in. In a context, new
information about a design object is
obtained. The current metamodel, together
with the new information, form the next
metamodel.

The metamodel mechanism is a sequence
of design steps (Veth 1987; Veerkamp, Pieters
Kwiers, and ten Hagen 1990). A design step is
performed by executing a design scenario. A
scenario consists of design procedures and
design rules that describe the procedural and
declarative design knowledge, respectively.
The rules and procedures are applied to the
metamodel and the aspect data. In such a
manner, we create a context that consists of
(a part of) the metamodel together with
knowledge about the design object valid in
this particular context. The designer can
interact with the context and change its con-
tents. After the session, the contents of the
context being evaluated are mapped to the
next state of the metamodel. Details of the
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relation between the metamodel mechanism
and aspect models are given in Veerkamp,
Kiriyama, Xue, and Tomiyama (1990).

The metamodel mechanism transfers the
metamodel from its current state to the next,
according to the stepwise refinement model.
The mechanism is driven by scenarios. The
designer selects a design scenario that is
appropriate for the current state of the meta-
model Mi. The scenario is executed in a co
text ci and performs some action on the con-
text in dialogue with the designer. The execu-
tion of a scenario continues as long as new
information can be obtained in the context.
The acquisition of new information is accom-
plished through the design procedures and
the design rules in a scenario.

The contents of a context are evaluated
when the execution of its scenario is complet-
ed. The evaluation checks the context ci for
consistency with the metamodel Mi.; that is,
no facts can contradict each other, and all
constraints over the design object model
must be met. The metamodel Mi is transferred
to Mi+1 if the evaluation succeeds. In case of
failure, all results of ci   are discarded, and the
process restarts from Mi (figure 4). This back-
tracking is performed in dialogue with the
designer so that the next attempt can be
made more successful.

A consecutive application of the metamod-
el evolution mechanism enables the designer
to perform a design job. Hence, the design
process consists of the execution of a series of
design scenarios. For each state of the meta-

model, an appropriate scenario exists. The
descriptive design process model presented
here is derived from GDT, providing a frame-
work that allows for design process represen-
tation. The metamodel mechanism is part of
this framework and depicts the evolutionary
nature of the design process; that is, it repre-
sents a design step. The design process, there-
fore, can be modeled as a stepwise refinement
process.

In this and the previous three subsections,
we obtained a descriptive design process
model. This model clarifies the representation
of the design object that dynamically
changes. We also suggested a way to apply
this model to building intelligent CAD sys-
tems. It seems reasonably interesting to
extend this descriptive model to a com-
putable model that can clarify the reasoning
process during the design process. However,
we do not just discuss design processes from a
theoretical viewpoint. Because both the
design object and the designer play a crucial
role in design, we have to consider another
viewpoint, that is, a cognitive viewpoint,
which is presented in the next section.

Design Experiment and a 
Cognitive Design Process Model
In this section, we discuss design processes
from an experimental point of view. We used
an experimental method called design experi-
ment (Yoshikawa, Arai, and Goto 1981;
Yoshikawa 1983; Takeda, Tomiyama, and
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Yoshikawa 1990). It is a kind of psychological
experiment in which designers are asked to
design an artifact from a given set of specifi-
cations. The whole designing session is video-
taped and analyzed by protocol analysis
methods. There are various differences
between an experiment in psychology and
one in design, not only in task but also in
environment, and so on. We discussed how
the experiment must be prepared to obtain
useful results and performed several experi-
ments based on this discussion (Takeda,
Hamada, Tomiyama, and Yoshikawa 1990).
This experimental approach is also studied by
Ullman, Dietterich, and Stauffer (1988).

One of the major results obtained from the
experiments is a cognitive model of design
processes when examining a design process
from a problem-solving point of view. This
model is constructed from unit design cycles.

A design cycle consists of five subprocesses:
(1) awareness of the problem: to pick up a
problem by comparing the object under con-
sideration with the specifications; (2) sugges-
tion: to suggest key concepts needed to solve
the problem; (3) development: to construct
candidates for the problem from the key con-
cepts using various types of design knowledge
(when developing a candidate, if something
unsolved is found, it becomes a new problem
that should be solved in another design
cycle); (4) evaluation: to evaluate candidates

in various ways, such as structural computa-
tion, simulation of behavior, and cost evalua-
tion (if a problem is found as a result of the
evaluation, it becomes a new problem to be
solved in another design cycle); and (5) con-
clusion: to decide which candidate to adopt,
modifying the descriptions of the object.

Utterances in the protocol data are catego-
rized into these subprocesses, and then a
design cycle is composed of these subprocess-
es. Basically, a single design cycle solves a
single problem, and sometimes new problems
that must be solved in other design cycles
arise during the suggestion and evaluation
subprocesses.

We can distinguish two levels in the design
process when we consider the designer’s
mental activity. One is the object level, where
the designer thinks about design objects
themselves, for example, what properties the
design object has and how it behaves in a cer-
tain condition. The other is the action level,
where the designer thinks about how to pro-
ceed with his(her) design, that is, what s/he
should do next. The designer seems to per-
form his(her) design mutually using these two
types of thinking. When looking at the
design cycles with respect to this aspect, they
also contain these two levels (figure 5).

In this section, we presented the cognitive
model of design processes. In the next sec-
tion, we look at the reasoning aspect of the
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where Ds is a set of logical formulas
describing a design candidate, Ko is knowl-
edge of object properties and behavior, and P
are properties of the design candidate.
Required specifications are included in P.
Given the design knowledge Ko and the
required properties P as the specifications, the
designer tries to find a candidate. Deduction
is then performed to see (1) what properties
the candidate has and (2) whether the candi-
date contradicts the given constraints, includ-
ing the specifications. The result is that the
description of the obtained candidate
becomes complete by detailing. If the candi-
date does not satisfy the specifications, the
designer either tries an alternative candidate
or modifies the design knowledge and the
specifications. Trying an alternative candidate
recalls further abductive or deductive process-
es, and finally, a complete description of the
solution and the specifications are obtained.
If there is no other way to explore, the design
process terminates.

The previous formalism solves the first and
the second problems but not the third one,
which is related to the incompleteness of
knowledge bases. We introduce circumscrip-
tion (McCarthy 1980) for this problem. We
assume that every piece of knowledge is valid
only when it is used in certain situations.
However, we can only identify the applicabil-
ity of knowledge when detecting a contradic-
tion. For a given set of logical formulas,
circumscription can be used to compute
exceptions that caused the contradiction. By
doing so, the original knowledge is modified,
and it is able to handle the incompleteness.

The Computable Model

In the previous subsection, we discussed the
idea of employing three different types of rea-
soning, that is, deduction, abduction, and cir-
cumscription, for formalizing design
processes. In this subsection, we show a com-
putable model of design processes based on
these three types of reasoning, and we inter-
pret the cognitive model in the framework of
the computable model.

Let us assume that a design process
changes its state step by step. In each state,
the following formula holds:

Dsc ∪ Koc |- Pc ,

where Dsc, Koc, and Pc are the description of
the current design candidate, the knowledge
available at the current state, and the proper-
ties of the current design candidate, respec-
tively. Now, we can make a computable
model by interpreting the cognitive model in

cognitive and descriptive models, which will
result in the computable design process
model.

A Logical and Computable
Model of the Design Process

Here, we reconstruct the cognitive and
descriptive models into a computable model.
Logic is a useful framework for this purpose
because it is developed from human thought
and is closely related to inference. Some
results toward understanding design in logic
are discussed in Coyne (1988) and Treur
(1990), but they are only concerned with
design processes at the conceptual level, not
at the decision-making or computable levels.

The Logical Foundation for the 
Computable Model

In logically describing design processes, it is
reasonable to assume the following simple
model as a first step:

S ∪ K |- Ds,
where S, K, and Ds are a set of formulas that
denote the specifications, knowledge used in
design, and the design solutions, respectively.
The solutions are derived from the specifica-
tions and knowledge as a result of deduction.
However, this formalization has three diffi-
culties in interpreting the whole of the design
process. First, design is not always performed
with complete information, which implies
that refinement of specifications and design-
ing of objects are mutually performed in
design. We not only use deduction but also
abduction (Fann 1970) for the formalization
of design processes to refine the specifica-
tions. Second, knowledge in the previous
assumption is concerned with how to design
objects. A typical example is, “If there is a
specification S1, then use a design object D1.”
Although it might be useful for routine
design, it is not appropriate for more flexible
and creative designs in which knowledge
about object properties and behaviors plays
an important role. The third problem, which
is related to the second, is knowledge incom-
pleteness and inconsistency. When the
designed object does not satisfy the specifica-
tions, the knowledge base should be regarded
as initially incomplete rather than inconsistent.

In this article, we regard design solutions and
knowledge as the premise and the specification
as the conclusion. Based on this assumption, we
formalize design processes as bidirectional
and iterative processes as follows:
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the logical framework discussed previously.
First, we concentrate on the object level.

During the suggestion subprocess, the
designer tries to find a feasible candidate. The
purpose of this subprocess is to obtain Dsc
from Pc and Koc; it can be regarded as an
abduction process. Both the development and
evaluation processes are regarded as deduc-
tion. In these subprocesses, the designer
applies his/her knowledge to the candidates
and obtains what is known at the current
state. The difference between these two sub-
processes lies in the kind of knowledge that is
applied. The development subprocess uses
knowledge to find out what properties the
design object has, whereas the evaluation
subprocess uses knowledge to compare those
properties obtained in the development sub-
process with expectations. The purpose of
these two processes is to obtain P from Ds and
Ko:

Dsc ∪ Koc |- P’  .

P’ can be different from Pc if and only if Dsc
or Koc changes. Dsc changes as the result of
abduction, and Koc changes as the result of
circumscription.

While the designer is developing or evalu-
ating, s/he sometimes encounters a difficulty
about the candidate and defines a new prob-
lem to solve it. It is a jump from a develop-
ment or evaluation subprocess to an
awareness-of-problem subprocess. We inter-
pret it as circumscription.

The continuation of the design process can
be disturbed for two reasons. One is lack of
information, which is dealt with by metalevel
reasoning. The other is a contradiction in the
theory that happens not because the knowl-
edge contains false information but because it
is incomplete. We can avoid this contradic-
tion by defining exceptions for these pieces of
knowledge using circumscription.

If a contradiction is detected in the theory,
we gather formulas that cause the contradic-
tion. We then add literals that are composed
of predicates that are abnormal to them and
circumscribe these abnormal predicates with
the theory. We obtain modified formulas in
which their abnormal predicates are substitut-
ed by non-empty formulas. As a result, the
contradiction is removed from the theory.
Because the formulas are modified, we cannot
always derive the formulas that represent the
required specifications from the current
design candidate. Some new formulas must
be added to the design candidate to satisfy
the specifications. In this process, the contra-
diction creates a new problem, that is, the
awareness-of-process subprocess.

To discuss the action level of the logical
framework, we introduce metalevel operations
to deal with this problem. In our approach,
operations on building theories and on how
to perform reasoning are introduced as met-
alevel operations, including setting up of Ds;
setting up of P; setting up of Ko; revision of
Ds by abduction on P and Ko; revision of P by
deduction on Ds and Ko; and revision Ko by
circumscription on Ds, P, and Ko.

Starting the design cycle is interpreted as
executing the setting up of P and the setting
up of Ko operations. Similarly, we can inter-
pret the suggestion, the development, and the
evaluation subprocesses as the executions of
these operations. Knowledge about how to
design can be represented as a sequence of
the operations on this level.

Reasoning on the action level is, therefore,
to obtain a sequence of the operations on the
object level. This reasoning is performed by
using the status of the object level and knowl-
edge about how to design. The status of the
object level is determined by what kind of
information is obtained on the object level
and how this information is obtained. Knowl-
edge about how to design is used only on this
level and includes procedural knowledge
about how to proceed with the design, the
design strategy, and so on. It is possible to dis-
cuss reasoning on the action level in the same
way we did for the object level. Actually, how-
ever, only deductive reasoning, such as rule-
based reasoning, is needed because most of
this type of knowledge is procedural.

We do not interpret the conclusion sub-
process with the logical framework. It is a
decision-making process that considers all
information obtained by other types of rea-
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Figure 6. Reasoning on Design Cycle.



The Architecture

The design simulator consists of two main
parts: the action-level inference system and
the object-level inference system. The object-
level inference consists of the workspaces Ds,
P, and Ko and three inference subsystems,
that is, deduction, abduction, and circum-
scription (figure 7).

The metalevel inference is performed by a
rule-based system. Knowledge used on this
level is about how to design, for example,
knowledge about selecting a knowledge base
and scheduling reasoning according to the
condition of the object level. The result of
this deduction is a sequence of operations on
the object level.

The object-level inference is performed by
abduction, deduction, and circumscription to
the workspace, which modify the current
state of Ds, P, and Ko. Ko contains knowledge
as a horn clause, and P and Ds contain
objects and their properties as atom formulas
that only have a literal. The inference on the
object level modifies the contents of Ds, P, or
Ko and sometimes causes contradictions,
which are reported to the metalevel as a con-
dition of the object level.

The abduction system is implemented based
on the algorithm proposed by Poole (1988).
The circumscription system is implemented
using the algorithm proposed by Nakagawa
and Mori (1987) for computing circumscrip-
tion (Lifschitz 1985) on clausal forms.

The design simulator simulates design
cycles by repeatedly applying abduction,
deduction, and circumscription. Their order
is specified by the action level, which asks the
users to choose when there are some alterna-
tives and when it encounters a conclusion
subprocess. This system is implemented in
Allegro Common Lisp and X11 on a Sun-4.

Example

We simulated a design process composed of
protocol data obtained by a design experi-
ment. Figure 8 shows a snapshot of the
design simulator solving this problem. The
task was to design a weighing scale; a part of
the protocol data is shown in figure 9. This
example demonstrates that the design simu-
lator is capable of replaying design sessions
by tracking protocol data obtained by design
experiments. The performance of the design
simulator indicates that the computable
model presented in the previous section
shows the same operational aspects as the
cognitive model. It also justifies that it is cru-
cial to employ different types of reasoning for
implementing design subprocesses of the cog-
nitive model as a computable model.

soning, and therefore, it seems to be reason-
ing on a higher level than those types of rea-
soning. We leave this subprocess unformalized.
Figure 6 summarizes the discussion and
shows the correspondence between the sub-
processes and the types of reasoning in the
logical framework.

The Design Simulator

We implemented a prototype of a design sim-
ulator that realizes the inference previously
discussed. We call it the design simulator
because it is designed to track the design pro-
cesses performed by designers.
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Figure 8. A Snapshot of the Design Simulator.



Conclusions
In this article, we presented three different
models: a descriptive model, a cognitive
model, and a computable model. In the
descriptive design process model, we present-
ed a general framework of the design process
as an evolutionary refinement process of the
metamodel. Because we put emphasis on the
representation of the design object and the
design process rather than on reasoning
aspects in the discussion of the descriptive
model, the mechanism of reasoning in design
did not become clear. These aspects are high-
lighted for the discussion on the cognitive
design process model. We examined the
design processes of designers at work and pre-
sented how the designer proceeds with
his(her) design.

We discussed the relationships among the
descriptive, the cognitive, and the com-
putable models. The computable model uses
the framework of the descriptive model, and
the reasoning in the computable model is an
interpretation of the cognitive model. A unit
design cycle in the cognitive model corre-
sponds to a refinement step in the descriptive
model. The framework of the computable
model is the evolutionary process of the
design object discussed in the descriptive
model; that is, we realized it as a revision pro-
cess of the theory in logic. This revision pro-
cess of the theory is performed by three
different types of logical reasoning: abduction,
deduction, and circumscription. Thus, we suc-
ceeded in integrating the descriptive and cog-

nitive models using a logical framework on
which the computable model is based. Fur-
thermore, this computable model resulted in
a system called the design simulator.
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(1) What mechanism does a standard scale use?
(2) It measures the weight like this (Figure A).
...
(3) If we can use a rack and pinion (Figure B), we can measure the weight
because the displacement is in proportion to the weight.
(4) Anyway, we think the indicator first.
(5) As it translates 5mm of the displacement
to the 100kg weight, the displacement per 1kg is 0.05mm.
(6) It is impossible to realize it with Figure B.
(7) If we don't mind the accuracy, it is possible by using many gears.
...
(8) But a standard scale must use a more simple mechanism.
...

Figure A Figure B

Figure 9. Examples of the Protocol Data.
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