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Over the past decade,
it has become clear
that one should go
beyond the level of
formalisms and pro-
gramming constructs
to understand and
analyze expert sys-
tems. In this article,
| first review some of
the existing propos-
als. I discuss the idea

framework.

This article discusses frameworks for studying
expertise at the knowledge level and knowledge-
use level. It reviews existing approaches such as
inference structures, the distinction between deep
and surface knowledge, problem-solving meth-
ods, and generic tasks. A new synthesis is put
forward in the form of a componential frame-
work that stresses modularity and an analysis
of the pragmatic constraints on the task. The
analysis of a rule from an existing expert system
(the Dipmeter Advisor) is used to illustrate the

implementation:
“Knowledge is to be
characterized entire-
ly functionally, in
terms of what it does,
not structurally, in
terms of physical
objects with particu-
lar properties and
relations” (p. 105).

The adoption of a
knowledge-level per-

of inference structures
such as heuristic classification (Clancey
1985), the distinction between deep and sur-
face knowledge (Steels 1984), the notion of
problem-solving methods and domain knowl-
edge filling roles required by the methods
(McDermott 1988), and the idea of generic
tasks and task-specific architectures (Chan-
drasekaran 1983). These various proposals are
obviously related to each other, which makes
it desirable to construct a synthesis that com-
bines their strengths. Such a synthesis is pre-
sented here in the form of a componential
framework. The framework stresses modulari-
ty and consideration of the pragmatic con-
straints of the domain.

Motivation

A major question with knowledge engineer-
ing is (or should be) that given a particular
task, how do we go about solving it using
expert system techniques. The standard
answer to this question used to be computa-
tional in nature. Textbooks talk about differ-
ent computational formalisms such as rules,
frames, and logic programming. They assume
that knowledge can be translated more or less
directly into computational structures from
observations of the expert’s problem solving
or from verbal reports about this knowledge.
It is true that at some point in the process of
developing a working application, we have to
face decisions on which implementation
medium to use; however, the computational
answer is only partly satisfactory. The gap
between the implementation level and the
knowledge and problem solving that we
observe in the human expert is too wide.
What is needed is another level of discourse
that talks about knowledge and problem solv-
ing independent of their implementation.

A key to the identification of this level is
contained in Newell’s (1982) landmark article
entitled “The Knowledge Level.” The article
covers the capabilities of a cognitive system
and how its contents are independent of the
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spective is clearly a
step in the right direction because it focuses
the analysis of expertise on issues such as
what the abstract task features are, what
knowledge the task requires, and what kind
of model the expert makes of the domain. It
also helps to explicitly focus on how to go
from the knowledge level to the symbol or
program level. | call this in-between level the
knowledge-use level. At the knowledge-use
level, we focus on issues such as how the
overall task will be decomposed into manage-
able subtasks, what ordering will be imposed
on the tasks, what kind of access to knowl-
edge will be needed (and, consequently, what
representations must be chosen), and how
pragmatic constraints such as limitations of
time and space or limited observability can be
overcome. It is only when these issues have
been worked out that the program itself can
be constructed. Given the current state of Al
programming technology, this last step does
not pose any major difficulty.

When we go through the expert system lit-
erature of the past decade, we see that several
ideas have emerged that go in the direction of
a knowledge level and a knowledge-use-level
analysis of expertise: the concept of an infer-
ence structure, the distinction between deep
and surface knowledge, the decomposition of
expertise into problem-solving methods and
domain knowledge filling the roles of these
methods, and the notion of generic task. All
these ideas have led to new architectures, new
explanation capabilities, and new approaches
to knowledge acquisition. They have led to a
focus on the knowledge, as opposed to the
information-processing aspects of a system,
and a new breed of so-called second-genera-
tion expert systems.

The new architectures have attempted to be
a foundation for systems that are less brittle,
in the sense that they combine more princi-
pled knowledge of the domain with the
heuristic knowledge that formed the bread
and butter of first-generation expert systems.

The explanations given by first-generation
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Figure 1. Heuristic classification inference stucture.
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expert systems (responses to why and how
questions) were somewhat unsatisfactory
because they were a simple replay of the rules
that were used to arrive at a conclusion. This
approach to explanation is computational.
When more of the knowledge level and
knowledge-use-level decisions that go into
the system design are explicitly represented,
it is possible to formulate much richer expla-
nations and justifications.

However, it is probably in the area of
knowledge acquisition that the new perspec-
tive has had the largest impact. Early on,
expert system developers approached their
expert with the question, What are your
rules? In other words, they asked questions in
terms of the computational formalism they
happened to be using. We now have a whole
arsenal of new questions to ask the expert,
such as What kind of model do you make?
What are the main features of the task? and
Does the task decomposition follow an estab-
lished pattern? This insight has led to new
knowledge-acquisition tools that almost
directly interact with the human problem
solver (Marcus 1988a).

In the first part of this article, these devel-
opments are briefly reviewed. Then, a synthe-
sis is presented in the form of a componential
framework. This framework is a tool for
studying expertise at the knowledge level and
knowledge-use level. The implications of the
framework are discussed in the final part of
the article.

Existing Approaches

In this section, | survey four ideas for under-
standing expert systems at the knowledge
level and knowledge-use level: inference
structures, deep versus surface knowledge,
problem-solving methods, and generic tasks.
Each of these ideas focuses on a different
aspect of expertise: the pattern of inference,

the domain model, the problem-solving
method, and the task.

Inference Structures

One of the first steps beyond the program
level was based on the notion of inference
structure. An inference structure describes the
pattern of inferences found in a particular
expert system. Heuristic classification is the
most widely studied class of inference struc-
ture (Clancey 1985; Van de Velde 1987).
Heuristic classification assumes three major
inference types: those making abstraction of
the data, those matching the data with an
(abstract) solution class, and those refining
this solution to the actual solution. How
these inferences are made (for example, by
one rule or many or by other kinds of infer-
ence mechanisms) is not at issue, although
the analysis includes a characterization of the
kind of relation that is used to perform the
inference. The different types of inferences
are sequentially ordered, as shown in figure 1.
Consider the following Mycin rule:
IF
1. A complete blood count is available
2. The white blood count is less than 2500
THEN
The following bacteria might be causing
the infection:
E.coli (.75)
Pseudomonas-aeruginosa (.5)
Klebsiella-pneumoniae (.5)
This rule can be analyzed in terms of heuris-
tic classification, as shown in figure 2 (adapt-
ed from Clancey 1985, p. 296). Figure 2 not
only displays the inference structure but also
depicts what domain relation is used for each
type of inference step. For example, abstrac-
tion makes use of qualitative, definitional,
and generalization relations. Heuristic match
is based on a causal relation. Refinement is
based on a subtype relation. Other applica-
tions might use different domain relations
with the same roles or might decompose
some steps (such as heuristic match) into sev-
eral intermediate steps.

There are three advantages to an analysis
in terms of inference structure. First, it shows
that there is a lot of structure underlying the
rules in expert systems, including many
hidden assumptions. Making this underlying
structure explicit is important for maintain-
ing the rule base, explaining it to others, or
querying the expert during knowledge acqui-
sition.

Second, the categorization of inference
structures shows relationships between rules
that go beyond the syntactically based rule
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Figure 2. Inference structure underlying MYCIN rule.

generalizations, such as those used in
Tereisias (Davis 1982). In particular, it makes
abstraction from specific domain-dependent
details and focuses on the role of domain
knowledge in the overall inference pattern.
Again, this guideline is important for knowl-
edge acquisition or maintenance.

Third, it shows the similarities between
expert systems constructed for apparently
widely diverse domains and tasks. Clancey
(1985) analyzed the inference structure
underlying a series of expert systems, showing
how the heuristic classification framework
applies to each of them. He thus illustrated
that the inference structure is one of the ways
that can be used to analyze a task beforehand
and detect its underlying solution method.

Although the concept of heuristic classifica-
tion has been instrumental in focusing expert
system research on a knowledge-use level, it is
not yet completely satisfactory, mainly
because the classification inference structure
appears to be so broad that almost any expert
system can be analyzed in terms of it. This sit-

uation is, of course, both good and bad. It is
good because it shows that the framework is a
significant empirical generalization. It is bad
because the framework omits important dis-
tinctions.

For example, the first clause in the Mycin
rule discussed earlier (a complete blood count
is available) is a screening clause (Clancey
1982), a clause that prevents unnecessary
questions from being asked, thus controlling
the data gathering. The notion of a screening
clause does not form part of the heuristic clas-
sification inference structure, and it is not
clear how it should be incorporated. Given
that careful data gathering is one of the
important features of expertise, this oversight
seems to be major, particularly because
screening clauses are a reoccurring inference
pattern that can help achieve careful data
gathering.

As another illustration, a clear distinction
can be made between different classification
methods. Top-down refinement and weighted
evidence combination are only two examples.
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Figure 3. Example of deep model in the form of a causal network.

Top-down refinement performs classification by
starting with the most general class and refin-
ing this class to a more specific one. Weighted
evidence combination determines all the fea-
tures of each class, combines the weights, and
then takes the class with the highest value as
the best matching class. This distinction
between different classification methods dis-
appears in the heuristic classification infer-
ence structure. Therefore, we cannot explain
why there is more than one conclusion in the
rule (E.coli, Pseudomonas-aeruginosa, and
Klebsiella-pneumoniae), what the function of
the weights is, why these specific weights are
appropriate, or how these weights interact
with the weights given in the other rules.
Finally, heuristic classification only
describes the pattern of inference. It does not
say anything about the kind of modeling that
takes place by the expert. On the contrary, it
blurs the distinction between different domain
relations (for example, causal, structural) by
categorizing them according to their contri-
bution to the abstract, match, or refine phase.

Deep versus Surface Knowledge

Even before heuristic classification and other
types of inference structure were widely dis-
cussed, another type of analysis was proposed

based on a distinction between deep and sur-
face knowledge (Hart 1984; Steels 1984). This
distinction focused not on the pattern of
inference but on the domain models underly-
ing expertise. Deep knowledge makes explicit
the models of the domain and the inference
calculus that operates over these models. A
typical example of a domain model for diag-
nosis is a causal model linking properties of
components through cause-effect relations.
An inference calculus operating over this
model could take the form of a set of axioms
that prescribe valid inferences over the causal
network, for example, inferences showing
that a certain cause possibly explains a specif-
ic set of symptoms. Surface knowledge contains
selected portions of the deep knowledge, in
particular, those portions that are relevant for
the class of problems that is likely to be
encountered. It also contains additional
heuristics and optimizations, for example,
shortcuts in the search space or decisions
based on the most probable situation.

Figure 3 contains an example of a deep
causal model (Steels and Van de Velde 1985).
A rule that represents a useful shortcut based
on this model is as follows:

IF

Plug-1 does not fire
Contact-points are okay



THEN
Check whether cable-1 is okay

The rule focuses on one malfunction, makes
one observation, and directly suggests a test.
Many such rules could be extracted from the
same network.

The distinction between deep and surface
knowledge has nothing to do with the for-
malism that is chosen to implement it. Deep
knowledge can be implemented with rules,
surface knowledge with frame-based represen-
tations, or vice versa. The distinction is at the
knowledge level and not the implementation
level.

Traditional expert systems only code the
surface knowledge. This limitation is clearly
seen in the Mycin rule quoted earlier, which
contained just enough information to have
the effect of the required inference (low white
blood cell count raises evidence for E.coli
infection) but none of the underlying domain
knowledge, such as the causal relation between
compromised host and gram-negative infec-
tion, or the organism-type hierarchy support-
ing refinement to E.coli infection. The fact
that only surface knowledge is represented
explains why traditional expert systems are
efficient and effective in problem solving.
However, because first-generation expert sys-
tems only code surface knowledge, they have
important drawbacks, such as brittleness,
weak explanation, and unclear boundaries
during knowledge acquisition. Deep expert
systems are intended to overcome these limi-
tations.

Deep expert systems contain two compo-
nents: One implements the deep knowledge
of the domain, that is, the domain model and
an inference calculus operating over it, and
the other implements the surface knowledge.
The second component typically has the form
of a collection of (heuristic) rules.

Two types of problem solving are possible.
First, reasoning can take place using the rules
from the surface component. This approach is
similar to a traditional expert system. Second,
reasoning can fall back on the deep knowl-
edge component if rules are missing to cover
a specific case or if it is difficult to explicitly
represent all possible rules. Some deep expert
systems also have a learning component, so
that problem solving using deep knowledge
can also be turned into more efficient surface
knowledge (Steels and Van de Velde 1985).
There are several motivations behind this
design:

Making deep knowledge explicitly available
allows a system to fall back on underlying
models and (weaker) problem-solving meth-
ods if no explicit surface knowledge is avail-
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. The importance of the deep expert system
movement is that it introduced a focus
on the underlying domain models.

able to efficiently solve a problem. Although
deep problem solving is, in principle, less effi-
cient, it typically covers a wider class of prob-
lems. Deep expert systems are, therefore, less
brittle.

Because deep knowledge is supposed to be
less biased toward use, it is hoped that knowl-
edge becomes, to some extent, reusable. For
example, a causal network is used in both
design and diagnosis.

Deep knowledge can be the source of better
explanations because the domain knowledge
that went into an inference step can also be
reported. An example of this approach is
Explain (Swartout 1981).

Making deep knowledge explicit is assumed
to be a step forward, toward more methodical
knowledge acquisition, because it is more sys-
tematic and closer to the theoretical knowl-
edge of a domain that is typically analytic
and explicit. For example, if we know all pos-
sible classes for a classification task in advance,
we can ask the expert why there are no rules
for a particular class or point out that there is
insufficient discrimination between two class-
es. Moreover, the deep knowledge provides
the background for justifying the inferences
that are part of the surface knowledge.

On occasion, surface knowledge has been
equated with associations and deep knowl-
edge with more principled knowledge of the
domain. From this perspective, first-generation
expert systems have been criticized because
they supposedly only contain associational
knowledge (DeKleer 1984). This criticism of
first-generation systems is not valid and is not
intended here, in part because an analysis of
expert systems such as Mycin reveals that
they also construct and use models (Clancey
1988) and in part because the knowledge in
first-generation systems can seldom be char-
acterized as purely associational. Consider, for
example, the following Mycin rule (VanMelle
1981, p. 25):

IF

It is not known whether there are factors
that interfere with the patient’s
normal bleeding

THEN

It is definite that there are not factors
that interfere with the patient’s
normal bleeding
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This rule implements a knowledge-based
approach to incompleteness (as opposed to a
weak domain-independent approach such as
circumscription or default logic). It is based
on the principle that if a particular event is so
important that it would have been noticed if
it occurred, then ignorance about its occur-
rence indicates that it did not happen. Clear-
ly, this association is not simply empirical; it
is also an ingenious piece of heuristic knowl-
edge.

Another example comes from R1, an expert
system for configuring computer systems
(McDermott 1982):

Verify-SBl-and-MB-device-adequacy-3

IF

The most current active context is verify-
ing SBI and massbus device adequacy
and there are more than two
memory controllers on the order

THEN

Mark the extra controllers as unsupported
(that is, not to be configured)
and make a note to the salesperson
that only two memory controllers
are permitted per system

This rule notices a constraint violation
(there should be no more than two memory
controllers) and proposes a fix of this con-
straint by eliminating excessive controllers
and making a note to the salesperson. The
constraint fix uses strong domain-dependent
knowledge as opposed to a weak domain-
independent constraint-relaxation algorithm.
To classify this association as empirical com-
pletely misses the point of this rule.

These two examples indicate that the
common characterization of early expert sys-
tems as just a collection of shallow if-then
rules is inappropriate. It is probably better to
think of them as compiling lots of deep
knowledge into a form that can immediately
and efficiently be used. The point about the
distinction between deep and surface is that
surface systems contain only the compiled
form, and everything that is not needed for
efficient performance is omitted.

Although the distinction between deep and
surface is clearly another step in the right
direction, and many expert systems have
recently been built that work along these
lines, it also raises other questions. First, early
work on deep expert systems seemed to imply
that there was one underlying deep model
that was more principled and more abstract
than the surface knowledge. Indeed, further
work along this line gave rise to the so-called
model-based approach, which postulates that
expert system building should start with an

encoding of the first principles of a domain
as deep knowledge (for example, qualitative
or quantitative models of the behavior of a
device to be diagnosed) (Davis 1984; DeKleer
1984). However, for most tasks, it is possible
to think of a variety of models, each focusing
on different aspects of the problem domain.
For example, for diagnosis, we might have a
structural model describing part-whole rela-
tionships between components and subsys-
tems, a causal model representing the
cause-effect relationships between properties
of components, a geometric model represent-
ing the spatial relations between the compo-
nents, a functional or behavioral model
representing how the function of the whole
follows from the functioning of the parts, a
fault model representing possible faults and
components for each function that might be
responsible for the fault, and an associational
model relating observed properties with states
of the system. Which of these models would
be the one used for deep knowledge? For
some researchers, this model would be the
causal one. For others, it would be the func-
tional one. The associational model tends to
be associated with surface knowledge. How-
ever, clearly, all these models are useful and,
in some sense, at the same level. Simmons
(1988) describes, for example, a system that
translates causal models into associational
models and shows how they have comple-
mentary utility in problem solving. There-
fore, the distinction between deep and
surface cannot be in terms of the type of
model.

Another point is that principled models are
not effective in problem solving except when
unrealistic assumptions are made (for exam-
ple, all observations are assumed to be correct
and have no associated cost, combinatorial
explosions are ignored, it is assumed that an
exact domain theory is known.). To avoid
ineffective problem solving, expert system
builders exploring deep models use knowl-
edge that is less principled than purely theo-
retical domain knowledge but not as sketchy
and as optimized as pure associations. Hart
(1984) talks in this context about second-
level knowledge, and Chandrasekaran and
Mittal (1983) seek a level “between the
extremes of a data base of patterns on one
hand and representations of deep knowledge
(in whatever form) on the other.” However,
the introduction of more levels leaves the
question about what kind of model is most
appropriate and how the in-between models
are related to the first-principled theoretical
knowledge on the one hand and the perfor-
mance system on the other.



The importance of the deep expert system
movement is that it introduced a focus on the
underlying domain models. However, some
questions remain unanswered, particularly
those associated with what type of model is
appropriate in certain circumstances or how
effective problem-solving performance is
obtained with deep models.

Problem-Solving Methods

Around 1985, McDermott (1988) and his col-
laborators began developing a series of knowl-
edge-acquisition tools that emphasized the
problem-solving method (and not the infer-
ence pattern or the domain model) as the
central key in understanding and building an
application. A problem-solving method is a
knowledge-use-level characterization of how
a problem might be solved. For example,
diagnosis might be done using the cover-and-
differentiate method: First, find possible
explanations covering most symptoms, and
then, differentiate between the remaining
explanations (Eshelman 1988). Construction
might be done using the propose-and-revise
method: First, propose a partial solution, then
revise this solution by resolving violated con-
straints (Marcus 1988). Each problem-solving
method contains certain roles that need to be
filled by domain models. For example, the
cover-and-differentiate method requires
knowing relationships between explanations
and the symptoms they cover and knowing
additional observations or tests that will fur-
ther differentiate. The propose-and-revise
method implies two roles: one to be filled by
knowledge that is proposing solutions, anoth-
er to be filled by knowledge that revises these
solutions.

The advantages of focusing on the prob-
lem-solving method are as follows: The roles
that need to be filled by a problem-solving
method prescribe what domain knowledge is
expected from the expert. The domain knowl-
edge is, therefore, no longer something that is
acquired and represented independent of how
it will be used in concrete problem solving, as
is the case with deep expert systems. However,
it is still explicitly and separately represented,
giving the advantages of maintainability and
systematicness in knowledge acquisition. The
knowledge-acquisition tool Mole (Eshelman
1988) is an example. The domain knowledge
of Mole is represented as a fault model that
explicitly represents relations between symp-
toms (such as excessive engine noise, lack of
power) and faults that act as explanations
(such as worn cylinders, worn crankshaft
bearings). The relations are further qualified

by states of the system that can increase or
decrease their possibility or plausibility (for
example, if the air conditioner is not turned
on, the fault “worn crankshaft bearings” for
the symptom “excessive engine noise” is
ruled out). This domain model is definitely
not a model based on first principles but is
not that different from what we find in deep
expert systems. What is different is that there
is a clear prior idea of how this domain model
will be used in the final performance system
and that only those parts of the model that
are needed in driving Mole’s problem-solving
method are acquired.

Focusing on the problem-solving method
leads to a streamlined methodology for doing
knowledge acquisition and might even lead
to a set of tools that can be directly used by
experts, provided the problem-solving method
has been clearly identified in advance. Several
such tools have been built and successfully
used in a variety of real-world applications
(for example, Salt [Marcus 1988b] and Sizzle
[Offutt 1988]).

The problem-solving method can be a major
source for the kind of explanations that go
beyond a pure recall of the steps that were
used. For example, when the reason for a query
is asked, it can be in terms of which phase of
the problem-solving method is being execut-
ed and what domain knowledge plays a role
in this step.

The approach of focusing on the problem-
solving method appears to be an important
step forward, judging from the many perfor-
mance systems that have recently been gener-
ated using this approach. However, there are
some questions here.

One of the major problems in knowledge
acquisition is knowing when to stop; that is,
When is the performance system sufficiently
complete to be put into actual use? The idea
of deep expert systems is to delineate—at
least in principle—the conditions under
which a system would be complete (for exam-
ple, all possible observations and all possible
causes are represented in the causal network).
The surface system selects those parts that are
deemed important in practical problem solv-
ing. However, if knowledge acquisition is
completely driven by the problem-solving
method, we no longer have any clear sense of
how much additional knowledge is needed.

A second problem is that the problem-solv-
ing methods proposed to date handle a com-
plete problem and, therefore, make a lot of
assumptions about how each subtask will be
handled. For example, a propose-test-refine
method might perform some classification
during the propose phase. This classification
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is typically built into a specific method. This
approach leads to a proliferation of methods
and points to the need for a more modular
decomposition of expertise than assumed to
date. This feature is a major part of the syn-
thesis that | propose in the second part of
this article.

Generic Tasks

Another line of research focuses on task fea-
tures and, thus, directly addresses the problem
of developing an engineering methodology
to build expert systems based on a task analy-
sis. The analysis of expertise in terms of tasks
(and, particularly, the ordering of the tasks,
that is, the control structure imposed on the
task structure) used to be a completely
domain-dependent matter, enforcing the
view that expert system development does
not show generalizations across domains of
expertise and, therefore, is doomed to start
new, in an ad hoc fashion, for every new
application being tackled. However, several
researchers have observed that tasks fall into
major classes. These tasks are called generic
tasks (Chandrasekaran 1983). In specific fields
of expertise, tasks are instances of these
generic tasks. Typical generic tasks are classifi-
cation, interpretation, diagnosis, and con-
struction (including planning and design).
The idea of generic tasks is not that interest-
ing in itself until we realize that the way in
which generic tasks are executed shows many
similarities across application domains: In the
diagnosis of circuits, cars, power plants, or
diseases, significant elements are in common,
specifically, the same problem-solving meth-
ods and the same type of domain models.

Same Problem-Solving Methods. The
same decomposition of the task into simpler
subtasks is found across domains. For exam-
ple, construction tasks are often decomposed
into the following subtasks: (1) generate a
partial solution, possibly by retrieving it from
a list of earlier solved cases; (2) test this solu-
tion to see whether it satisfies the constraints;
and (3) adapt the partial solution so that the
constraints are no longer violated. It is signif-
icant that this decomposition was found
independently by Marcus, Stout, and McDer-
mott (1987) for the domain of elevator con-
figuration; Simmons (1988) in the domain of
geologic plan formulation; and Mittal, Dym,
and Morjaria (1986) in the domain of equip-
ment design. Similarly, common decomposi-
tions are found when other generic tasks are
studied. For example, interpretation often
starts with an attempt to restrict the context.

Diagnosis often starts by following up on asso-
ciations between symptoms and malfunctions.

Same Type of Domain Models. The
same type of domain models and, therefore,
the same sort of inferences operating over
these domain models are found when tasks of
the same generic nature are studied. For
example, classification typically makes use of
a domain model in the form of a catalog of
hierarchically organized prototypes. Such a
domain model supports generic subtasks of
classification such as context restriction and
selection of the class from a list of remaining
classes. Similarly, diagnosis typically uses
causal models and subtasks such as “try to
find a deeper cause” or “try to eliminate part
of the network by making an appropriate
observation.” Construction typically uses
constraints as domain models and uses sub-
tasks such as “adapt the partial solution by
varying one of the elements that play a role
in a violated constraint.”

The focus on tasks and task decomposition
is important. From a theoretical point of view,
it gives us a way to build a theory of expertise
that makes significant empirical generalizations.
This theory should identify a set of generic
tasks and list, for each one, what kind of
problem-solving methods and what kind of
domain models are to be expected. To devel-
op such a theory is a matter of empirical
investigation of expert knowledge.

Once such a theory exists, we have strong
models for interpreting knowledge-acquisi-
tion data (that is, protocols, interviews from
experts, and so on). For example, if a task is a
design task, we could interpret knowledge-
acquisition data from the perspective that the
expert’s decomposition of the task is gener-
ate-test-adapt. This approach is pursued by
several researchers concerned with knowledge
acquisition (Bennett 1983; Breuker and
Wielinga 1984).

Generic tasks and their associated solution
methods could be implemented at a generic
level and made available as software modules
that are to be instantiated for specific applica-
tions. This approach was followed by researchers
such as Chandrasekaran and his collabora-
tors, who developed such modules for generic
tasks such as diagnosis or classification
(Bylander and Mittal 1986).

Although the generic task approach has
been received with great enthusiasm, it raises
other issues. It is generally agreed that diag-
nosis and classification are common generic
tasks; however, there is less agreement with
other tasks. For example, is interpretation a



generic task, or is it a special case of classifica-
tion? These questions point to a need to
better define the criteria for classifying a task
as generic. Should these criteria be in terms of
the problem to be solved? Should they be in
terms of the problem-solving methods or
domain models used?

Tasks of the same generic nature (for exam-
ple, diagnosis) can be done in many different
ways. For example, diagnosis can be done by
selecting from a list of possible fault models
the one that is appropriate in a given situa-
tion or selecting in a causal network the cause
that best explains the observed symptoms.
However, diagnosis can also be done by con-
structing a model of the system and then of
its deviations in functionality from the
normal model. This diversity indicates that
diagnosis is not the right way (or at least not
a sufficient way) to categorize and select prob-
lem-solving methods and domain models.

Moreover, as in the case of the problem-
solving methods proposed by McDermott et
al., there seems to be a problem of grain size
or something similar. The existing task-specif-
ic architectures solve the complete task and,
therefore, make concrete decisions about the
methods and representations for each of the
subtasks. A task of the same generic nature
might require a slightly different approach for
one of the subtasks. Rather than using a com-
pletely different architecture then, there
should be more modularity in the task-specif-
ic architectures so that new architectures can
be dynamically configured. This point was
also recognized by researchers developing
task-specific architectures (Brown and Chan-
drasekaran 1989).

Summary

In this section, we studied a variety of ways to
describe aspects of expertise and expert sys-
tems at the level of knowledge and knowl-
edge use. Each of these characterizations has
led to specific theories on how knowledge
acquisition should be done or what the archi-
tecture of the resulting expert system should
look like. They all focused on different aspects
of an application: the pattern of inference,
the domain model, the problem-solving
method, and the task.

Obviously, there are many interconnections
between these viewpoints. For example,
heuristic classification or other abstract infer-
ence structures can be seen as examples of
problem-solving methods. In this view, heuris-
tic classification implies roles for abstraction,
matching, and refinement. Similarly, the
focus on problem-solving methods for knowl-

edge acquisition and system construction
implies explicit representations of the domain
models, similar to the way deep expert sys-
tems explicitly represent the domain models,
albeit only those parts that are really needed
by the problem-solving method are made
explicit. Finally, the identification of generic
tasks is a way to start systematically cata-
loging domain models and problem-solving
methods, although the task classification used
to date might not be sufficiently fine grained.
Given all these interdependencies, it should
be possible to come to a synthesis that works
out the different components of expertise in a
top-down manner. | turn to such a synthesis
in the next section.

The Componential Framework

This section outlines a framework for knowl-
edge and knowledge-use analysis that com-
bines the different ideas briefly reviewed in
the previous section. Apart from combining
the ideas (and, with hope, their strengths),
the framework also imposes a lot more modu-
larity on the different components of exper-
tise and emphasizes a consideration of the
task’s pragmatic constraints.

Task Analysis

The componential framework assumes first of
all that there is a detailed analysis of the task.
A real-world task is seldom concerned with
handling a single, simple-to-describe problem.
Instead, a conglomerate of mutually depen-
dent tasks has to be dealt with, and tasks have
internal structure: They can be decomposed
into subtasks with input-output relations
between them. Each task and subtask is ana-
lyzed from a conceptual and a pragmatic
point of view.

From a conceptual viewpoint, a task is char-
acterized in terms of the problem that needs
to be solved, that is, diagnosis, interpretation,
design, planning, and so on. This characteri-
zation is based on properties of the input, the
expected output, and the nature of the opera-
tion taking place to map input to output. It
runs along the lines of the generic tasks dis-
cussed earlier. For example, if the input con-
sist of observed symptoms, and the output is
an explanation of how the symptoms came
about, then we characterize the task as diag-
nosis. If the input consist of observed data,
and the output is a categorization of these
data, then we characterize the task as inter-
pretation. Design starts from specifications as
input and produces an object that conforms
to these specifications as output.
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Figure 4. A topological model of a subway network.

The pragmatic viewpoint focuses on the
constraints in the task that result from the
environment in which the system will oper-
ate or from the (epistemological) limitations
that humans (but also computers) have.

The first limitation is in time and space.
Decisions have to be made in finite time
(sometimes even in a small time interval), and
available memory for storing structure is always
finite. Therefore, models that require the
exploration of large search spaces or that take
too much time to compute cannot be used.

The second limitation is in observation.
Observation must be done through sensors or
human intermediaries that directly interact
with the real world and, thus, are imprecise
to some degree. Observations also differ in
the amount of effort needed to make them.
Therefore, the data necessary to use a model
might not be available or might not have the
required degree of precision.

The third limitation is in theory formation.
Models must be inductively derived using

real-world interaction or communication
with other humans. This approach often
limits the models in their accuracy and scope
of prediction.

From these epistemological limitations
follow pragmatic constraints, such as the
need to avoid search; work with weak infer-
ence rules or weakly defined concepts (in
other words, concepts not defined in terms of
necessary and sufficient conditions but typi-
cal features or exemplars); handle incom-
plete, inconsistent, and uncertain data; and
handle explosions of information. The pres-
ence of these problems sets domains tackled
by expert systems apart from domains for
which other techniques, such as algorithms
or numeric and logical modeling, are appro-
priate. Thus, if there is a complete quantita-
tive theory, and all the data necessary to
make effective computations based on the
theory can easily be obtained, there is no
point in building an expert system. This
expert system is only relevant when the
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Figure 5. Functional model of a printed circuit board.

theory is not too certain; some data are miss-
ing or might be difficult to get; there are no
effective computations, for example, because
the equations cannot be solved, and so on.
This notion of pragmatic constraints is related
to the insight that an intelligent system will
necessarily have bounded rationality (Simon
1982).

I believe that it is of particular importance
to explicitly characterize the various pragmat-
ic constraints of a task. The following are typ-
ical examples of such constraints: (1) The
symptoms used as input to a diagnostic task
might have an associated cost, and part of the
problem might be to minimize the number
and cost of observations. (2) The data to be
interpreted might show errors or might be
incomplete. (3) The categories into which the
data must be classified might not be strict;
that is, they might only be definable in terms
of typical features and not in terms of neces-
sary and sufficient conditions. (4) The specifi-
cations given for a design task might be

incomplete or inconsistent, or the number of
possible combinations might be so large that
exhaustive search is impossible.

Models

The perspective of deep expert systems has
made us aware that problem solving centers
around the idea of modeling. The problem
solver constructs one or more models of the
problem-solving situation (something | call
the case model) and uses various more abstract
domain models to expand the case model by
inference or data gathering. The next step is,
therefore, to find out what kind of case models
are being constructed for each task and what
domain knowledge is available to do so.

For example, in one application involving
the monitoring of subway traffic (Steels and
Vanwelkenhuysen, 1990), researchers at VUB
Al Lab found that the following domain
models were used: (1) a structural model con-
taining the stations, the tracks, and so on; (2)
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a topological model detailing the layout of
stations (this model was also used in the
interface to the system [figure 4]); (3) a behav-
ioral model with which the functioning of
the network could be simulated; (4) a fault
model that contains a hierarchy of possible
faults; and (5) a repair model that relates
faults to repairs. While monitoring a particu-
lar network, a case model was constructed
that included features of the current opera-
tion, a model of the fault that was occurring
in a particular situation, different suggested
repair plans, evaluations of these plans, and
SO on.

In another application concerning printed
circuit board diagnosis (Vanwelkenhuysen
1989), the researchers found that the expert
used domain models such as (1) a functional
model that details the functions and their
interrelationships (such a model was also
used in the interface to the user [figure 5], (2)
a structural model that describes the various
components and their major properties (for
example, the number of pins on an integrated
circuit), (3) a causal model that describes the
causal relationships between the components,
and (4) a shift-register model. Also, here the
case model describes the circuit from different
perspectives. It contains tests already execut-
ed, hypotheses about which components
might be malfunctioning, and so on.

Note that during the analysis of what kind
of modeling is used, there is no mention of
any implementational constructs. Some of
these models (such as the repair model that
relates faults to repair plans) might be in the
form of rules; others might be in the form of
hierarchies or networks.

Problem-Solving Methods

The problem-solving methods are responsible
for applying domain knowledge to a task. In
general, they perform two functions: divide a
task into a number of subtasks or directly
solve a subtask. In either case, they can con-
sult domain models; create or change inter-
mediary problem-solving structures; perform
actions to gather more data, for example, by
querying the user or performing a measure-
ment; and expand the case model by adding
or changing facts.

Here are two examples of problem-solving
methods that decompose a task into subtasks.
For interpretation, validate the data, restrict
the context, classify the data, and deduce
additional features based on class member-
ship. For design, test specifications for incom-
pleteness or inconsistency, generate or extend
partial solution, test adequacy of the solution,

refine by resolving violated constraints, and
return to the second (generate or extend par-
tial solution) until the design is complete.

I am not implying that there is one unique
problem-solving method for every (generic)
task. For example, an interpretation task
might not require validation of the data or
prior restriction of the context. A design task
might be done by retrieving an earlier solu-
tion and then adapting this solution by
extrapolation (as in Sizzle [Offutt 1988]). | am
also not claiming that a particular problem
will always be solved in the same way. One
expert might use a different method from
another. For example, one expert might know
a causal model of the domain and use it for
diagnosis, whereas another expert might
simply have seen lots of cases and developed
a library of associations between symptoms
and faults.

Each of the tasks resulting from a decom-
position needs to be analyzed in turn. For
example, “restrict the context” and “classify
the data,” two possible subtasks of interpreta-
tion, are two classification tasks. They have
their own set of conceptual characteristics
and pragmatic constraints. Based on these,
methods are selected to handle these tasks.
Six possible methods for classification are
now described.

First is linear search. This method is the
simplest, requiring no domain-dependent
heuristics: It goes through the possible classes
each time, comparing all the features of a
class with the features of a case. The class
where all features match is selected.

The second method is top-down refinement.
This method assumes that the classes have
been organized in a hierarchy, with the gen-
eral classes on top. It systematically searches
from the top, each time establishing the most
appropriate class at a particular level.

Third is association. This method follows
up on the association between a feature and
its class. It assumes a domain model that
indicates what features are strongly associated
with a class.

The fourth method is differentiation. If
only a limited list of classes remains, the
classes could be compared and their differen-
tiating features computed. These differentiat-
ing features are good candidates for additional
data gathering, so that discrimination between
the classes can take place.

Fifth is weighted evidence combination.
Each feature (or combination of features)
associated with a class might be more or less
essential to the class. For example, the color
of a dog might be less essential than the
shape (although we do not expect orange



dogs). Based on this information, we could
calculate how much evidence each feature
contributes to the recognition of the class.
One method for selecting the best matching
class is, therefore, to combine the weights of
all the observed features for each class and see
which feature has the highest score. This
method is used in Mycin, for example, to
select the organism causing the infection.

The sixth method is distance computation.
This method introduces a distance metric and
computes what the distance is between this
class and the current case for each possible
class. This method is used in case-based and
memory-based reasoning.

Note that each of these methods requires its
own type of domain knowledge. Top-down
refinement requires a hierarchy of classes,
weighted evidence combination requires
knowledge about the weights of all the fea-
tures, and distance computation requires a
good metric in the domain. Some of these
methods still generate their own decomposi-
tion in subtasks depending on how fine we
want to modularize the task decomposition.
For example, to implement differentiation,
we need to consult the domain model to find
out for which feature the remaining hypothe-
ses differ; we need to select the most discrimi-
nating of these features; the user needs to be
asked about one of these features; and if the
user knows the answer, those hypotheses that
violate the observed feature need to be elimi-
nated. The list of current hypotheses (usually
called the differential) and the list of differen-
tiating features are typical examples of inter-
mediate problem-solving structures.

The task structure is the backbone of the
whole analysis. It describes the task decompo-
sition at the different levels. An example of
part of the task structure for an interpretation
task is contained in figure 6. Not all these
tasks are necessarily executed. Which tasks
are executed, as well as the order in which
they are executed, is determined at run time,
as specified in the task decomposition
method.

Relating Task Features to Solutions

| started this article by posing a question
about how we could select expert system solu-
tions based on task characteristics. The com-
ponential framework is designed to address
this question because it allows us to make a
mapping from conceptual features, pragmatic
constraints of a task, and available knowledge
to components such as problem-solving
methods, domain models, and task structures.

In selecting the appropriate problem-solv-
ing method, both conceptual and pragmatic
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Figure 6. Possible task structure for interpretation task.

aspects play a role as well as the available
domain knowledge. The conceptual aspects
play a role because they specify the nature of
the input-output relation. The pragmatic
aspects are a key element for distinguishing
between the different methods: For example,
if a class cannot be defined in terms of a set of
necessary and sufficient conditions, only in
terms of typical features that might or might
not be present, then it is not possible to use
differentiation because the absence of a fea-
ture does not necessarily mean that a class
can be eliminated from consideration.
Instead, weighted evidence combination and
distance computation are the appropriate
methods because they allow recognition of a
class even if some of the features are not pre-
sent. However, if the cost of observation plays
an important role, then weighted evidence
combination is less appropriate because it
requires asking for a significant number of
features to make a balanced decision. Here,
differentiation is more effective because,
often, one observation, if selected carefully,
can significantly reduce the number of
remaining hypotheses.

The selection and acquisition of the domain
model are related to the selection of the prob-
lem-solving method, but there is usually still
a choice in terms of the depth at which
knowledge is represented. There are two view-
points. The first viewpoint is associated with
the problem-solving-method school, the
second with the deep expert system school.

A problem-solving method has a set of roles
that need to be filled by specific domain
knowledge. For example, differentiation
requires that we know the differentiating
features between classes. We can choose to
represent only those parts of the domain
knowledge that are necessary to drive the
problem-solving method. The differentiation

SUMMER 1990 41




Articles

42 Al MAGAZINE

method is apparent in Mole (Eshelman 1988),
a diagnostic system. Mole acquires just
enough knowledge about the domain to find
an initial set of hypotheses that cover the
symptoms and differentiate between the
remaining hypotheses. Mole has no represen-
tation of the causal relationships between
symptoms and explanations, the functioning
of the underlying device, or any other
domain theory. Note that Mole still has an
explicit representation of the domain model
in the form of a network of symptoms and
explaining causes and, thus, differs from first-
generation expert systems where this model
would be embedded in rules.

Alternatively, we can look at domain
models from the viewpoint of domain theo-
ries. Domain theories are the (more) princi-
pled theories underlying problem solving in a
domain and are sought by deep expert sys-
tems. A problem-solving method selects cer-
tain parts of these theories and, possibly,
requires additional heuristic knowledge. An
example is the system discussed in Steels and
Van de Velde (1985); as with Mole, this
system also uses (implicitly) a cover-and-
differentiate method, but the association
between symptoms and covering causes, as
well as further observations that should be
done for differentiation, is derived from the
causal model. The causal model is represent-
ed explicitly and exhaustively. The expert is
queried for a causal model, not for knowledge
to implement the cover-and-differentiate
method. Similarly, More (Kahn 1988) con-
tains a domain theory in the form of an
event model, which is accessed and used in a
selective way by More’s problem-solving
methods.

These two viewpoints are, of course, com-
plementary and which approach is followed
depends on what is available. If a complete
and explicit domain theory is available or
derivable, there is no reason why it should
not be used. In this case, the problem-solving
method implies a particular way of accessing
this domain theory. The domain theory,
moreover, plays an important role in validat-
ing the domain model. However, if a domain
theory is not available or cannot be used
because of pragmatic constraints in the
domain, then it might be better to acquire
and represent only those parts that are really
relevant to drive the problem solving. Thus,
we find a synthesis between the problem-
solving-method approach and the deep
expert system approach.

The previous discussion concerned the con-
ceptual aspects of domain knowledge: features
for doing classification, causal relations

between symptoms and states of devices,
temporal relations between events, and so
on. However, there are also pragmatic aspects
of domain knowledge, that is, aspects that
explicitly address the pragmatic constraints
in the domain, such as weights for weighted
evidence combination or additional heuristics
for overcoming missing observations. Here,
we can adopt the two viewpoints previously
introduced: The pragmatic aspects could be
expressed independent of use in problem
solving—in which case, the problem-solving
method would have to select the appropriate
parts—or they could only be expressed and
acquired as needed for driving the problem
solving.

Thus, More (Kahn 1988) uses Bayesian
probability theory, in particular, the concept
of expected likelihood and a theory on the
relation between reliability and the signifi-
cance of evidence to determine the diagnostic
significance of an observed symptom. To
make use of these theories, the system needs
additional information about the domain,
such as perceived reliability or conditions
under which a cause is more likely to occur.
More explicitly queries the expert for this
additional information. This pragmatic
domain knowledge is, therefore, not derived
from a deeper pragmatic domain theory but
is acquired and represented as needed by the
problem-solving methods. Similarly, weight-
ed evidence combination, possibly using the
Buchanan and Shortliffe (1984) uncertainty
calculus, requires knowing what the contribu-
tion is of a particular constellation of observa-
tions for the belief in a particular hypothesis.
This contribution could possibly be derived
through statistical reasoning if sufficient
amounts of data are available (as demonstrat-
ed in Adams [1984]), or alternatively (as was
the case for Mycin), the expert could be
queried to fill in these weights. Note that the
statistical derivation acts as a justification for
the weights in the same way a conceptual
domain theory can act as a way of validating
the domain model.

In the work at the VUB Al Lab, researchers
have found it useful to separately represent
those parts of the domain model that are
specifically put in to deal with the pragmatic
constraints in the domain and the conceptual
aspects of the domain model. These parts are
the heuristic annotations. For example, the
weights needed for using weighted evidence
combination are implemented as heuristic
annotations of the list of classes and their
associated features. This approach makes it
possible to separately develop the (conceptu-
al) domain theory and its heuristic annotations.



Implications

Several implications of the framework were
sketched in the previous section: for design
and knowledge acquisition, the architecture
of expert systems, and the analysis and under-
standing of existing expert systems to better
maintain or justify them. | briefly cover the
first two points, then close the article with a
careful analysis of rules from existing expert
systems.

Implications for Design and
Knowledge Acquisition

The componential framework suggests a
structured methodology for doing knowledge
acquisition. The researchers at the VUB Al Lab
have successfully tried this methodology in a
number of industrial expert system projects.
The process moves in a top-down systematic
fashion, as follows: Starting from the com-
plete application task, first characterize the
task identifying the major features—the
description, the input and output, the generic
task, the pragmatic constraints, the case
model, and the available domain knowledge.

Second, investigate the set of possible
methods and associated domain models that
either decompose the task into subtasks or
directly solve the task. Some of the tasks can
be done by existing software components or
human intervention, which indicates that the
framework can also be used to build integrat-
ed expert systems.

Third, given a decomposition, instantiate
the tasks implied by the method. Reiterate
for each of the subtasks from the first task
(characterize the task) until tasks have been
reached that are directly solved by the appli-
cation of domain knowledge.

For example, the task of instructing a student
might be analyzed as follows:

Student Instruction

Description: Instructing a student in algebra.

Input: Observations of student behavior.

Output: Tailored explanations of course
material, exercises, reports on progress.
Generic task: Instruction.

Domain knowledge: Knowledge about alge-
bra, detection of errors in student knowl -
edge, tutoring.

Case model: Model of student.

Pragmatic problems: Large set of possible
errors, partial unpredictability of student
behavior, complexity of algebra.

Method: Divide and conquer. Decompose
instruction into diagnosis, repair planning,
and monitoring.

Subtasks: Diagnose student, plan repair,
monitor.

Each of the resulting subtasks is further ana-
lyzed. Here, for example, is the diagnosis sub-
task:

Diagnose Student

Description: Identify the malfunction of
the student.

Input: Student behavior.

Output: Indicate what knowledge the stu-
dent is missing or what knowledge is in
error.

Generic task: Diagnosis.

Domain knowledge: Knowledge about
possible student errors.

Case model: Model of student behavior.

Pragmatic problems: Missing parts of the
observations, large amount of possible
errors.

Method: Cover and differentiate.

Subtasks: Find possible error classes cover-
ing the current case. Differentiate between
remaining possibilities.

Once this task analysis is available, the
details are worked out. For example, a domain
model is selected for the student errors that is
compatible with the chosen method (cover
and differentiate). For the cover part, this
domain model might consist of associations
between symptoms and a catalog of possible
behaviors and misbehaviors. A possible repre-
sentation might be in terms of a set of rules,
where the if part gives the associations and
the then part the suggested behaviors. For the
differentiate part, the domain model might
be a list of behaviors and associated features,
so that the most discriminating feature can be
computed and observed in the student
model.

The selection of a domain model makes the
acquisition of the contents of this model easy
because it is clear what is expected from the
expert, and there is a lot of systematicity and,
thus, opportunities for validation in the
domain model.

Implications for Architecture

Apart from a systematic investigation of prob-
lem-solving methods, domain models, and
their associated task features, it is also possi-
ble to develop shells that closely model the
componential framework discussed in this
article. Researchers at the VUB Al Lab are
developing such a shell, called Kan (see Rade-
maekers and VanWelkenhuysen 1990 for
related work). With this shell, a componential
analysis can be directly translated into a
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working system. The shell supports the
explicit representation of case models,
domain models (of all types, that is, not just
rules but also hierarchies, networks, or con-
straint systems), and problem-solving meth-
ods. For example, the heuristic annotation
needed by weighted evidence combination is
represented in a model that looks like the fol-
lowing:
(define (weighted-element weighted-finch-
model) red-eared-firetail
(weighted-feature (species red-eared-
firetail) 1)
(weighted-feature (beak red) 0.5)
(weighted-feature (lores insignifi-
cant-uniform) 0.1)
(weighted-feature (eyebrow insignifi-
cant-uniform) 0.1)
(weighted-feature (ear-patch red) 0.8)
(weighted-feature (crown insignifi-
cant-uniform) 0.1)
(weighted-feature (back-and-wings
insignificant-uniform) 0.05)
(weighted-feature (rump red) 0.2)
(weighted-feature (tail brown) 0.8)
(weighted-feature (throat insignifi -
cant-uniform) 0.05)
(weighted-feature (breast spotted) 0.2)
(weighted-feature (belly spotted) 0.1)
(weighted-feature (flanks spotted) 0.1)
(weighted-feature (legs brown) 0.1))

This example concerns the classification of
different species of the Australian finch. Red-
eared-firetail is one species. One of the features
is (ear-patch red). Weights of different fea-
tures are 0.5 or 0.8. The problem-solving
methods are also explicitly described. For
example, the frame for weighted evidence
combination looks like the following:

(define classificatory-method weighted-evi
dence-combination
(domain-model-type collection)
(solution-method solve-by-selection)
(method-cliche classify-cliche)
(fact-finding environment-driven)
(purpose goal-based)
(activation data-driven)
(reason-about case-model)
(element-status class)
(feature-status prototypical)
(domain-complexity small)
(cost cost-not-relevant)
(uncertainty uncertain)
(incompleteness incomplete))

These descriptions are used to perform the
task of selecting expert system solutions once
an analysis of the task has been performed.
They talk about how data gathering will be
performed (does the problem solver wait for
the environment to supply descriptions
[environment-driven], or does it actively seek
them [system-driven]), how knowledge will
be accessed (data-driven versus goal-driven),
what the complexity of the classification task
is (small or large), what the status of the fea-
tures (necessary and sufficient versus proto-
typical) is, and so on. Code is associated with
the problem-solving method that implements
the inference engine. This code is constructed
by filling in and instantiating a cliche (the
classify-cliche).

Each task in the task structure is mapped
onto a problem solver, which is a structure that
contains goals, case models, problem-solving
methods, and domain models. The problem
solver can decompose its goal into subgoals
(and pass it on to new problem solvers) or
directly solve a goal by applying the domain
knowledge to problem solvers. Using Kan, the
researchers have also explored the use of
knowledge compilation techniques to trans-
form knowledge from one form (for example,
a list of classes) into another (for example, a
decision tree).

Implications for Analyzing
Existing Systems

A lot more space is needed to fully elaborate
on the design methodology and the Kan
shell. Thus, I end this article with an analysis
of a rule from an existing expert system to
illustrate the utility of the framework for ana-
lyzing existing systems. | take a rule from the
Dipmeter Advisor, a geologic expert system
that interprets a fine-grained measurement of
varying resistivity in the rocks alongside a
bore. The interpretation is in terms of the tilt-



ing of the subsurface layers and the geologic
structures that caused these patterns. Consid-
er now the following rule from the Dipmeter
Advisor system (Smith 1984):

IF

1) Delta-dominated marine zone

2) Continental shelf marine zone

3) Sand zone intersecting marine zone
4) Blue pattern in intersection

THEN
Distributary fan with

Top of fan equal to top of
blue pattern

Bottom of fan equal to
bottom of blue pattern

Direction of flow equal to
azimuth of blue pattern.

When someone is confronted for the first
time with a rule such as this one, it appears to
be pure magic. How can the expert conclude
from the presence of a particular pattern on
the dipmeter log the presence and direction
of a distributary fan? These first impressions
have enforced the view that experts use
incomprehensible heuristics and rules of
thumb that defy rational explanation. One of
the advantages of a knowledge level and
knowledge-use-level analysis of expertise is
that you come to understand rules in rational
ways.

Task Structure. The task structure of the
Dipmeter Advisor contains the following
major tasks (Smith 1984):

Validity check: See whether the logs are of
good quality. Identify areas where there is evi-
dence of tool malfunction or incorrect pro-
cessing.
Structural analysis: Find the large-scale struc-
tural features that result from folding, fault-
ing, uplifting, and so on.
Lithological analysis: Identify the zones
with constant lithology (for example, sand
Zones).
Depositional environment analysis: Identify
what the depositional environment is under-
lying a specific zone, and infer properties
about this environment.
Stratigraphic analysis: Find out which geo-
logic system (river channel, dune, reef, bar)
was the source of the structures seen by the
data.

The rule is part of the final task, stratigraph-
ic analysis. It decomposes into the following
three subtasks:

Consider the depositional environment:
The above rule concerns delta-dominated,
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continental shelf marine zones.

Identify the depositional system: The rule
recognizes a distributary fan.

Deduce further properties: The rule deduces
the top and bottom of the fan and the direc-
tion of flow.

Task Typology. The task decomposition
for stratigraphic analysis can be interpreted in
terms of the generic tasks and subtasks previ-
ously discussed. Specifically, the generic task
underlying the distributary fan rule is inter-
pretation. Its decomposition into three
generic subtasks is typical for interpretation:
context restriction (consider depositional
environment), selection (select depositional
system), and deduction (deduce further prop-
erties).

I now investigate the problem-solving
methods and domain models that solve these
tasks.

Context Restriction (Consideration of Deposition-
al Environment). This task is done in clauses 1
and 2 of the rule. It uses the following geo-
logic facts:

First, there are such elements as marine
environments, that is, environments covered
by the sea.

Second, some marine environments are
dominated by deltas. A delta (such as the Nile
delta or the Mississippi River delta) is a system
where a river ends at the sea. The river has an
impact deep into the sea.

Third, marine environments are divided
into different subenvironments, depending
on how far they are from the coast. One
subenvironment is the continental shelf.

Fourth, once inside a continental shelf
marine environment, only one significant
geologic structure occurs, namely, the chan-
nels formed by the river delta and the fans at
the end of these channels. This system of
channels and fans is called a distributary
system (because it distributes material from
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the river into the sea). The channels and fans
that are part of the system are called distribu-
tary channels and distributary fans (figure 7).

This domain model can easily be represent-
ed in a hierarchy with lower nodes contain-
ing more specific contexts (figure 8). This
context tree is the domain model underlying
the context restriction task.

Although there are different uses for this
domain model, in this particular case, it is
used to narrow the set of interpretations to
those that occur in a particular geologic envi-
ronment. Here, the context is narrowed from
a marine environment to a delta-dominated
marine environment to a continental shelf
zone and, finally, to a distributary system as
the only significant geologic structure.
Within this system, only three contexts
remain: distributary channel, deltaic plain,
and distributary fan. The rule itself does not
explain how each of these contexts is estab-
lished, but it does specify in which order con-
texts need to be considered and refined.
Specifically, it says that one should use top-
down refinement: Start from the most gener-
al context, and narrow this context to the
most specific one. Top-down refinement is
the problem-solving method used in con-
junction with the context tree.

Consider the following rule from Mycin
(Buchanan and Shortliffe 1984, p. 554) as
another illustration of the same generic sub-
task:

IF

1) The infection which requires therapy is
meningitis

2) The type of meningitis is bacterial

3) Only circumstantial evidence is
available for this case

4) The age of the patient is greater than
17 years

5) The patient is an alcoholic

THEN
There is evidence that the organisms
which might be causing the infection
are diplococcus-pneumoniae (.3) or
E.coli (.2)

The first part of this rule (clauses 1 and 2) is
again a case of context restriction using top-
down refinement. (Because Mycin uses back-
ward chaining, the ordering of the clauses in
this rule is really a way to formulate in which
order the questions raised by each clause are
to be considered.) The underlying context
tree is depicted in figure 9. The context is
refined from infection to meningitis and then
to bacterial meningitis. Then, only a limited
group of organisms remains, and circumstan-
tial evidence (namely, alcoholism) is consid-
ered to identify them.

These examples illustrate the major charac-
teristics of the componential analysis of
expertise previously outlined: tasks, domain
models, and problem-solving methods. Tasks
are partial steps in the solution of the prob-
lem. The generic task considered here is inter-
pretation, with context restriction as the first
generic subtask. Domain models represent
facts about the domain. An example is a con-
text tree. Problem-solving methods are ways
of realizing a particular task, through either
further decomposition or concrete actions.
An example is top-down refinement.

A specific rule compiles elements of these
components for immediate and efficient use.
Thus, in its first two clauses, the distributary
fan rule compiles the task of context restric-
tion using top-down refinement based on a
tree of geologic contexts.

The same types of domain models, task
types, and problem-solving methods can be
found across domains. The Dipmeter Advisor,
as well as Mycin, uses the same realizations of
the same generic tasks. However, although
the type of these components is domain
independent, their application is domain spe-
cific. The expert knows that in his domain, it
is a good idea to first restrict the context.

Selection of Depositional System. | now return
to the distributary fan rule. After context
restriction, which is done by clauses 1 and 2,
three possibilities remain: distributary fan,
deltaic plain, and distributary channel. Each
of these possibilities has an associated proto-
type: The distributary fan can be found on
continental shelf, delta-dominated marine
zones; is made up of sand; has layers decreas-
ing in dip (blue pattern); and has a direction
of flow that is the azimuth of decrease. The
deltaic plain can be found on continental
shelf, delta-dominated marine zones; is made



up of shale; has a constant grain size; and has
layers constant in dip (no pattern). The dis-
tributary channel can be found on continen-
tal shelf, delta-dominated marine zones; is
made up of sand; has layers with decreasing
dip (blue pattern); has a grain size that becomes
finer as it goes up; has top layers with increas-
ing dip; and moves in a perpendicular direc-
tion (red pattern).

Clauses 3 and 4 of the distributary fan rule
take care of selecting a prototype from this
catalog:

IF

1) Delta-dominated marine zone
2) Continental shelf marine zone
3) Sand zone intersecting marine zone
4) Blue pattern in intersection
THEN
Distributary fan with
Top of fan equal to top of blue pattern
Bottom of fan equal to bottom of
blue pattern
Direction of flow equal to azimuth of
blue pattern

These two clauses implement the task of
selecting the prototype that best fits the cur-
rent situation from the catalog. The problem-
solving method by which the Dipmeter
Advisor finds selection is differentiation. The
system looks at distinguishing features and
decides on the basis of these features that a
distributary fan is present. The features are
lithology (sand versus shale), which differen-
tiates between distributary channel or fan on
the one hand and deltaic plain on the other,
and pattern of dip (blue versus red over blue),
which differentiates between fan and chan-
nel. Other features could have been chosen,
such as the evolution in the grain size, but
were not, presumably because they are not as
easily observed on the dipmeter log.

The same selection task is found in other
applications. The Mycin system contains a
subsystem for identifying the organism caus-
ing the infection, using rules such as the fol-
lowing (Buchanan and Shortliffe 1984, p. 92):

IF

1) The stain of the organism is grampos,
and

2) The morphology of the organism is
coccus, and

3) The growth conformation of the
organism is chains

THEN

There is suggestive evidence (.7) that
the identity of the organism is
streptococcus

Again, there is a catalog of prototypes for
organisms. Each prototype describes one
organism with its various features (identity,

stain, morphology, aerobicity, growth confor-
mation, and so on). One member of this cata-
log follows:
Streptococcus

member of G+cocci

grampos stain

coccus morphology

growth conformation in the form of

stains

This rule is concerned with identifying the

prototype. Note that the rule does not per-
form context restriction but immediately
focuses on the selection itself. The problem-
solving method used for selection in this case
is not differentiation but weighted evidence
combination: Combinations of observed fea-
tures raise the evidence for the presence of a
particular prototype from the catalog. In the
previous rule, the combination of three fea-
tures adds more plausibility (namely .7) to the
Streptococcus hypothesis. Other rules add
strength to other members of the catalog. In
general, all rules are tried, and at the end, the
prototype with the highest strength wins out.
In this case, the heuristic annotation specifies
what the import of each feature or combina-
tion of features is for the strength of a specific
prototype.

Deduction. The analysis of the distributary fan
rule is not yet finished. We have seen how
clauses 1 and 2 restrict the context and how
clauses 3 and 4 select a prototype from a lim-
ited remaining catalog of prototypes. We still
have to explain aspects of the then part of the
rule. It is already clear that the conclusion we
have is a distributary fan. However, what
about the other conclusions, that is, top of
fan equal to top of blue pattern, bottom of
fan equal to bottom of blue pattern, and
direction of flow equal to azimuth of blue
pattern.

Clearly. the generic task carried out in this
part of the rule is deduction. The domain
model that contains the knowledge needed to
make these inferences is an example of a con-
straint system. A constraint system ties togeth-
er a number of domain properties using
equality relations, possibly augmented with
numeric or logical operators. The following is
the constraint system underlying the then
part of the distributary fan rule:

Top of fan = top of blue pattern

Bottom of fan = bottom of blue pattern

Direction of flow = azimuth of blue pattern

The problem-solving method used here is
calculation. The constraints are translated
into a formula that can be used in computa-
tion. In this case, the calculation is trivial. In
other applications, it can be much more com-
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I A constraint system ties
together a number of

domain properties using
equality relations . . .

plex. For example, Mycin uses complex equa-
tions to compute the recommended dosage
using factors such as weight of the patient
and age.

This analysis shows that the framework
sketched in the previous section can be used
to analyze rules in existing rule-based sys-
tems. This analysis clarifies the rationale
behind a rule and shows that it is not a
simple empirical association but a carefully
crafted combination of task decomposition,
problem-solving method, domain model, and
heuristic annotations. It also shows that the
view that surface knowledge consists of shal-
low associations is not justified, at least not if
we describe the Dipmeter Advisor as an
example of an expert system with only sur-
face knowledge. Instead, the Dipmeter Advi-
sor appears to have as much deep knowledge
as we might want; it is only represented in a
different form, compiled for efficient problem
solving.

Conclusions

This article analyzed different ideas that have
recently emerged for the description and
design of expert systems. These ideas all
attempt to go beyond the implementation
level, which focuses on formalisms and
implementation constructs. They try to cap-
ture what has become known as the knowl-
edge level and the knowledge-use level. Four
key ideas were studied: inference structures,
deep expert systems, problem-solving meth-
ods, and generic tasks. Each of these ideas
focuses on one aspect of expertise and prob-
lem solving: the inference pattern, the
domain models, the problem-solving meth-
ods, and the task features.

The article also proposed a componential
framework that attempts to synthesize the

different viewpoints. It is based on an analy-
sis of expertise broken down into compo-
nents: the tasks and subtasks, the domain
models, the case models, and the problem-
solving methods. The implications of this
framework for the methodology of expert
system design, architectures, and analysis
were briefly outlined.

The perspective put forward in this article
allows for a vast amount of work concerned
with cataloging the various components of
expertise found in different application
domains and systematically studying the rela-
tionships between task features (both concep-
tual features and pragmatic constraints) and
choices for each of the components. At some
point, we should end up with a knowledge
engineering handbook, similar to handbooks
for other engineering fields, that relates task
features with expert system solutions.
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