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Mobility is key to quality of life, equity of opportu­
nity, and economic growth in urban environments.  
When transportation infrastructure operates ef­

ficiently and people are able to move freely, cities thrive. 
The major deterrent to urban mobility is traffic congestion. 
It is estimated that congestion costs residents of U.S. cities 
$160,000,000,000 in lost time and fuel costs, while pumping 
an additional 50,000,000,000 tons of CO2 into the atmo­
sphere (Texas A&M Transportation Institute 2018). To make 
matters worse, people are increasingly moving to cities. The 
number of people living in urban areas is expected to grow 
from fifty percent of the world’s population currently to 
sixty-eight percent by 2050 (United Nations, Department 
of Economic and Social Affairs 2019). Unfortunately, the 
traditional traffic engineering approach to mitigating con­
gestion, that of building more road capacity, is not typi­
cally possible in urban environments due to land-use issues, 
geographical constraints, and so forth that limit space for 
expansion. Instead, policies for reducing the number of ve­
hicles on the road and increasing reliance on mass transit 
systems must be combined with mechanisms and technol­
ogies for increasing the efficiency of surface street traffic 
flows. In this article, we focus on this latter issue.

 Real-time traffic signal control presents  
a challenging multiagent planning pro
blem, particularly in urban road networks 
where, unlike simpler arterial settings, there 
are competing dominant traffic flows that 
shift through the day. Further complicating 
matters, urban environments require at-
tention to multimodal traffic flows (ve-
hicles, pedestrians, bicyclists, buses) that 
move at different speeds and may be given 
different priorities. For the past several years, 
my research group has been developing and 
refining a real-time, adaptive traffic signal 
control system to address these challenges, 
referred to as scalable urban traffic control 
(Surtrac). Combining principles from auto-
mated planning and scheduling, multiagent 
systems, and traffic theory, Surtrac treats 
traffic signal control as a decentralized on-
line planning process. In operation, each in-
tersection repeatedly generates and executes 
(in rolling horizon fashion) signal-timing 
plans that optimize the movement of cur-
rently sensed approaching traffic through 
the intersection. Each time a new plan is 
produced (nominally every couple of seconds), 
the intersection communicates to its down-
stream neighbors what traffic it expects to 
send their way, allowing intersections to 
construct longer horizon plans and achieve 
coordinated behavior. Initial evaluation of 
Surtrac in the field has demonstrated signif-
icant performance improvements, and the 
technology is now deployed and operating 
in several U.S. cities. More recent work has 
focused on integrating real-time adaptive 
signal control with emerging connected 
vehicle technology, and exploration of the 
opportunities for enhanced mobility that di-
rect vehicle (or pedestrian) to infrastructure  
communication can provide. Current tech-
nology development efforts center on vehicle 
route sharing, smart transit priority, safe in-
tersection crossing for pedestrians with dis-
abilities, real-time incident detection, and 
integrated optimization of signal control and 
route choice decisions. This article provides 
an overview of this overall research effort.
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One key reason for poor traffic flows on urban 
surface streets, and hence one major cause of con­
gestion today, is poorly timed traffic signals. By and 
large, traffic signal control in urban road networks has 
changed surprisingly little over the past fifty years. 
Traffic signal timing plans are generally prepro­
grammed in advance, based on snapshot assessments  
of average traffic conditions by traffic engineers. 
Actual traffic conditions can vary significantly from 
such average assessments, and, in any event, traffic 
patterns change over time as neighborhoods evolve. 
There is continual cost in keeping preprogrammed 
traffic signals up to date, and frequently munici­
palities do not have the funds to maintain them. 
Although more recent technological advances in  
sensing (for example, aboveground detection sys­
tems such as video cameras and radar) are often 
adopted by cities as they refresh their traffic signal 
infrastructure, these sensors still tend to be used in 
the same mundane ways that older, in-ground induc­
tion loop technology was previously used — to detect 
and react to vehicles that are already stopped at the 
intersection rather than looking ahead and antici­
pating the arrival of approaching vehicles. Despite  
the advances in intelligent systems and machine 
learning technologies in recent years, the traffic signal 
at the typical urban intersection remains an extremely 
unintelligent decision-making system.

For the past several years, my research group has 
been developing and refining an approach to real- 
time, adaptive traffic signal control aimed specifically 
at urban road networks. Real-time traffic signal control 
presents a challenging multiagent planning problem in 
this setting, where, unlike simpler suburban corridors, 
there are competing dominant traffic flows that shift 
through the day. Further complicating matters, urban 
environments require attention to multimodal traffic 
flows (vehicles, pedestrians, bicyclists, buses) that 
move at different speeds and may be given different 
priorities. Our approach to this problem is embodied 
in a real-time, adaptive traffic signal system called 
scalable urban traffic control (Surtrac). Combining 
principles from automated planning and scheduling,  
multiagent systems, and traffic theory, Surtrac treats 
traffic signal control as a decentralized online planning 
process. In operation, each intersection repeatedly 
generates and executes (in rolling horizon fashion) 
signal-timing plans that optimize the movement 
of currently sensed approaching traffic through 
the intersection. Each time a new plan is produced 
(nominally every couple of seconds), the intersection 
communicates to its downstream neighbors what 
traffic it expects to send their way, allowing intersec­
tions to construct longer horizon plans and achieve 
coordinated behavior. The Surtrac system has proved 
to be quite effective in practice, reducing travel 
times through controlled networks by twenty to 
twenty-five percent, and number of stops and wait 
times by thirty to forty percent. The system is now 
deployed and operating in several U.S. cities, in­
cluding Pittsburgh, Pennsylvania; Atlanta, Georgia; 

Portland, Maine; and Quincy, Massachusetts. More 
recent work has focused on integrating real-time  
adaptive signal control with emerging connected 
vehicle technology, and exploration of the oppor­
tunities for enhanced mobility that direct vehicle- 
to-infrastructure (V2I) and pedestrian-to-infrastructure 
(P2I) communication can provide. Current technology 
development efforts center on vehicle route sharing, 
smart transit priority, safe intersection crossing for 
pedestrians with disabilities, real-time incident de­
tection, and integrated optimization of signal control 
and route-choice decisions. In this article, we provide 
an overview of our overall research effort and vision 
of future urban mobility, summarize the results we 
have obtained to date, and highlight the challenges 
that remain.

The remainder of the article is organized as follows. 
I will first introduce the traffic signal control problem 
and review past work toward its solution. Next, this 
problem is formulated as an online, collaborative 
planning process, and describes the algorithms under­
lying the Surtrac approach. I then summarize experi­
mental results obtained with Surtrac in the field and 
current deployment progress, and then turn attention 
to more recent work aimed at boosting Surtrac per­
formance through direct V2I and P2I communication 
of real-time vehicle information. The article con­
cludes with a discussion of additional opportunities 
for enhancing future mobility and the technical 
challenges that remain.

The Traffic Signal Control Problem
Contemporary signalized intersections are controlled  
by a signal timing plan, which dictates in what order 
and for how long various movements through the 
intersection get the green signal. Consider the ba­
sic intersection depicted in figure 1, which identifies 
eight individual vehicle movements through the inter­
section. Typically, compatible movements are grouped 
into movement phases (for example, “phase 2,6 pairs 
east and west traffic flows”), and the intersection’s tim­
ing plan is then specified as a sequence of phases. Al­
though not necessarily the case, the ordering of phases 
is more often than not kept fixed from cycle to cycle 
(as is shown in the sample timing plan of figure 1), 
and we will make this assumption in the work to be 
presented. With this assumption, the crux of the prob­
lem of generating a signal timing plan is to determine 
how much time to allocate to each phase (with a zero 
duration indicating that the corresponding phase will 
be skipped). As mentioned earlier, conventional signal 
systems use fixed, preprogrammed timing plans, some­
times employing simple actuation to trigger or skip mi­
nor phases (for example, left turn signals) based on the 
presence or absence of a queue. Adaptive traffic control 
systems, alternatively, sense approaching traffic flows 
and dynamically adjust timing plans over time.

Adaptive traffic signal systems have been around 
since the 1980s. The most successful have been systems 
that adapt through adjustment of timing plan 
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parameters over time, including the splits (or proportion 
of time given to each phase in the cycle), the cycle 
length, and the offsets between the cycle starts of 
neighboring intersections. These systems include  
the Split Cycle Offset Optimization Technique  
(Robertson and Bretherton 1991) and the Sydney 
Co-ordinated Adaptive Traffic System (Lowrie 1992), 
two of the earliest commercial adaptive signal sys­
tems, and Adaptive Control System-Lite (Luyanda 
et al. 2003), a more recent Federal Highways Admin­
istration-sponsored effort to create a lightweight 
adaptive signal system alternative. These systems 
operate by integrating traffic flow information from 
sensors at or before the intersection over time, and then 
periodically updating timing plan parameters. They 
tend to operate well in circumstances where traffic 
flows evolve smoothly and continuously, but be­
cause they tend to centralize decision-making and rely 
on past traffic flow information to make adjustments 
for future traffic, they can be limiting with respect to 
real-time response to deviations in actual conditions.

Another class of adaptive signal system, referred to 
here as online intersection planning, does focus more 
directly on the real-time traffic signal control problem  
and extends naturally to network-level coordination. 
Prototypical examples of this approach include Real- 
Time Hierarchical Optimized Distributed Effective 
System (Mirchandani and Head 2001; Shelby 2001). 
These systems place more emphasis on decentral­
ized decision-making at each intersection with 
peer-to-peer communication, sometimes with ad­
ditional coordination through hierarchical reasoning. 

Historically, these approaches have been limited by 
the computational requirements associated with online 
intersection planning, which have significantly re­
stricted either the planning horizon or the temporal 
precision of the timing plan. In the work presented 
here, we adopt this same online planning perspective, 
but introduce a new intersection scheduling formu­
lation that overcomes this limitation.

Yet another approach to adaptive signal control 
that has emerged in recent years and has had par­
ticular success in suburban corridor settings, involves 
use of a shared global plan. If a single dominate traffic 
flow can be preidentified, then an optimized fixed 
plan can be developed for this flow in advance, re­
ducing the adaptive signal control problem to that of 
managing the side-street traffic. The In-Sync system 
(Stevanovic and Zlatkovic 2011) is based on this phi­
losophy. However, this approach is less suitable for 
more complex urban road networks where there are 
competing dominant flows.

The artificial intelligence (AI) research community  
has also proposed several approaches to the adaptive 
traffic signal control problem. Early work by Bazzan 
(2005, 2008) focused on multiagent systems ap­
proaches, emphasizing both distributed constraint 
optimization and multiagent reinforcement learning  
approaches. See Bazzan and Klügl (2013) for a gen­
eral review of research in this area. Most recently, 
a multiagent reinforcement learning system called 
Multiagent Reinforcement Learning for Integrated 
Network of Adaptive Traffic Signal Controllers 
(El-Tantawy, Abdulhai, and Abdelgawad 2013) has 
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Figure 1. A Sample Signal Timing Plan.

Adapted with permission from Sen and Head (1997).
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demonstrated significant improvement when applied  
to a simulated network of fifty-nine intersections in 
the city of Toronto. From a real-time adaptive perspec­
tive, however, one difficulty of reinforcement learn­
ing approaches is the time that is required to adapt. 
In circumstances where traffic patterns are transient 
(for example, the emptying of parking garages after a 
sporting event), the system may not be sufficiently re­
active. Another stream of AI research has introduced 
a class of reservation-based approaches that could 
be applicable in a future, connected autonomous 
vehicle world (Dresner and Stone 2008). Under these 
schemes, approaching vehicles communicate with 
the intersection to request space and time for crossing 
the intersection, and the intersection reserves slots 
so as to guarantee safe passage. Recent work in this 
paradigm (Stevanovic and Mitrovic 2018) has shown 
the potential benefits of giving up classic assumptions 
about unidirectional traffic lanes. A major challenge for 
this approach is realizing a world where all intersection 
stakeholders, including pedestrians and bicyclists, are 
fully connected with the coordination infrastructure. 
The work described herein also anticipates a con­
nected and increasingly autonomous world, but our 
focus is on nearer-term scenarios where connectivity 
and autonomous vehicles are not yet ubiquitous, and 
the need for physical traffic signals remains.

Other AI research has explored the benefits of new 
formulations of the traffic signal control problem. 
One effort by Guilliard et al. (2016) has developed a 
novel mixed-integer linear program formulation that 
significantly extends the scalability and practicality of 
classic models. Another has examined the effective­
ness of Planning Domain Definition Language-based 
modeling and planning of traffic signals in response 
to detected congestion conditions (Vallati et al. 2016). 
These works, however, are more strategic and do not 
address the real-time control problem of interest here.

Finally, there are an increasing number of big-data 
approaches to the real-time traffic signal control  
problem. In Baluja, Covell, and Sukthankar (2017), 
for example, microauctions are combined with ma­
chine learning techniques to produce signal timing 
plans that capture real-time conditions. Alternatively, 
Didi, the Chinese ride hailing company, is working to 
use the data it is collecting from its drivers to regularly 
compute and install fixed timing plans that reflect 
recent traffic flow data. From a real-time control per­
spective, however, these approaches continue to be 
limited by their reliance on models of past observed 
traffic data to control current traffic flows.

Surtrac: Traffic Control as 
Decentralized, Online Planning

The Surtrac system that we have developed (Xie, 
Smith, and Barlow 2012; Xie et al. 2012; Smith  
et al. 2013) is designed specifically for complex 
urban road networks, where there are multiple, 
competing dominant flows that change through 
the day. To emphasize responsiveness to real-time 

events, it takes a decentralized, online planning 
approach. Each intersection continually senses its 
approaching traffic and optimizes its own local 
traffic flow. Intersections communicate flow infor­
mation with their neighbors to achieve coordinated 
behavior at the network level.

Figure 2 illustrates the basic concept of operations. 
We put a computer running the Surtrac system at 
every intersection. At the beginning of each plan­
ning cycle, each intersection pulls a snapshot of its 
approaching traffic flows from its local sensors (video 
cameras, radar, etc.) and develops a predictive model 
of when traffic in various approaching directions is 
expected to arrive at the intersection. Based on this 
predictive model, the system generates, in real time, 
a signal timing plan that optimizes the movement of 
approaching traffic through the intersection. Once 
the timing plan is generated, the system begins  
to execute it, sending a command to the controller 
(the hardware device that actually controls the signals) 
to either extend the current phase or switch to the 
next phase. The system also communicates the traffic  
it expects to be sending to its downstream neighbors. 
Downstream intersections are doing the same thing, 
generating their own local timing plan, but now, in 
addition to the approaching traffic that they can see 
through their local sensors, they have an expectation 
of what traffic is coming down the pike behind them, 
which allows them to generate a longer horizon plan. 
Each intersection asynchronously initiates a new 
planning cycle every second or two.

There are several basic advantages to this real-time 
approach to traffic signal control. First and foremost, 
traffic signals are optimized for the actual traffic on 
the road at any point in time. Second, the approach 
is designed for optimization of grids and other com­
plex urban road networks, with suburban corridors 
being handled as a special case. Third, the predictive 
model that is generated can be weighted according to 
traffic mode (for example, passenger vehicle, bus, pe­
destrian, bicyclist), and, therefore, Surtrac-generated 
timing plans can reflect multimodal optimization 
criteria. Finally, because the system is decentralized, 
there is no centralized planning bottleneck, and the  
system is inherently extensible to city scale. Moreover,  
the system’s decentralized framework also promotes 
incremental deployment, which allows cities to spread 
their infrastructure investments over time.

Schedule-Driven Traffic Control
Two key technical ideas underlie the Surtrac approach 
to real-time traffic control. The first is a novel for­
mulation of the intersection control problem as a 
special kind of single machine scheduling problem. 
An aggregate representation of approaching traffic  
is used to identify the input jobs that must be se­
quenced through the intersection to produce the 
timing plan, providing an abstraction that permits ef­
ficient solution while retaining the nonlinear nature 
of traffic flows. The second is the idea of communi­
cating planned outflows to downstream neighbors, 
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to provide visibility of likely future input jobs and 
enable generation of longer horizon timing plans. 
Although intersections only communicate with their 
direct neighbors, this information can flow multiple 
hops over repeated planning cycles.

Figure 3 illustrates the abstract representation of 
approaching traffic used by Surtrac’s schedule-driven 
approach in more detail. Sensor data are used to 
generate an ordered sequence of pairs < arrj, depj > for 
each approaching road segment, indicating the pro­
jected arrival and departure times at the intersection 
for each currently sensed vehicle (shown in figure 3a). 
These input data streams are then aggregated into 
larger vehicle clusters (platoons and queues) based 
on proximity (as shown in figure 3b and c). More 
precisely, each sequence of vehicle arrival and de­
parture time pairs is transformed into a sequence 
of triples < arrj, depj, capj >, where arrj is the arrival 
time of the first vehicle in cluster j, depj is the de­
parture time of the last vehicle in cluster j, and capj  
is the number of vehicles in cluster j.

Given this predictive model of current traffic 
flows, the problem of generating an intersection 
timing plan becomes one of merging all traffic clus­
ter sequences approaching the intersection from 
different directions into a single sequence, subject 
to temporal constraints relating to fairness (that is, 
minimum and maximum bounds on phase dura­
tions) and safety (that is, fixed yellow and all red 
periods between each phase). Consider the simple 
example in figure 4 where the problem involves 
an intersection with two competing signal phases. 
Treating this problem as a single machine sched­
uling problem with non-pre-emptable jobs (that is, 
indivisible clusters), figure 4 shows a feasible solu­
tion, from which a specific intersection timing plan 
can be extracted. The basic objective is to minimize 
cumulative delay of all input jobs. More precisely, 
the intersection scheduling problem is formulated 
as
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Figure 2. Surtrac Concept of Operation.
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such that for each phase j, Gmin
j ≤ durationj ≤ Gmax

j 
and for any two consecutive phases i and j in the se­
quence, endi + AllRed ≤ startj, where C is the set of clus­
ters in the schedule, exitc is the time that cluster c exits 
the intersection according to the schedule, Gmin

j and  
Gmax

j are phase minimum and maximum times, and 
AllRed is the safety time required between phases.

Surtrac solves this intersection scheduling problem 
via forward dynamic programming (DP) search. At 
each stage of the search, a new job (cluster) is added 
to the set of partial solution sequences, and checks 
are performed to eliminate dominated solutions 
(that is, partial solutions in the same phase, with 
the same included clusters and higher accumulated 
delay). Two versions of the algorithm have been for­
mulated and tested, one that guarantees optimality 
(relative to the abstracted representation of traffic 
flows), and one that is more efficient by greedily re­
taining only one minimum delay solution at each 
stage of the search, and thus is not guaranteed to 
find the optimal.1 Experimentally, these procedures 
have been found to provide orders-of-magnitude 
speedup over previous solutions to the online  
intersection control (Xie et al. 2012). Although 
some of this improvement is due to increases in 

computational power, the larger boost is due to 
the single machine scheduling problem formula­
tion. Prior work has emphasized time-based problem 
formulations, which result in a search process that 
expands solutions tick by tick. This introduces a 
problematic dependency on the granularity of a 
tick. If the tick size is too small (for example, one 
second), then the practical planning horizon is too 
short to be useful. Alternatively, if the tick size is 
large (for example, say one minute), then the actual 
nonlinear flow of approaching traffic is significantly  
obscured. In the case of Surtrac’s formulation, problem  
complexity is instead a function of the number of 
clusters and number of phases into the future to 
be scheduled, which drastically reduces computa­
tional requirements and enables rapid generation of 
long horizon plans. Please refer to the article by Xie 
et al. (2012) for full details of the DP search proce­
dure. In the article by Xie et al. (2014), a weighted 
formulation is introduced for purposes of assign­
ing different levels of importance to different travel 
modes (for example, giving pedestrians higher prior­
ity than passenger vehicles in a downtown cultural 
district) if travel mode data can be captured by the 
type of sensors that are being used.
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Anticipated queue: Anticipate the number of vehicles that are either presently
in the queue or will join it before it clears (Lämmer & Helbing, 2008)

Threshold-based clustering: merge clusters with small gaps

Projected vehicle arrival and departure times (derived from sensor data)

Figure 3. Abstract Representation of Traffic Flow as Vehicle Clusters.
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Another key idea underlying Surtrac’s schedule- 
driven approach is a protocol for communication of 
planned outflows to downstream neighbors. Once 
an intersection computes a new intersection timing 
plan, it utilizes accumulated historical information on 
turning proportions to estimate the clusters that will 
be proceeding downstream in different directions, 
and communicates these cluster sequences forward. 
Recipient Surtrac processes at downstream intersec­
tions append this information to the appropriate 
vehicle cluster sequences obtained through local 
sensor data to formulate a longer horizon planning 
problem. In essence, Surtrac makes the optimistic 
assumption that traffic flow will proceed as planned 
and that if it does, neighboring intersections will be 
perfectly coordinated. Of course, execution does not 
always unfold as planned, and Surtrac hedges against 
this possibility by layering checks for specific situa­
tions of poor coordination. For example, if spillback  
(a circumstance where vehicle queues exceed the ca­
pacity of the approaching road segment and extend 
back through the upstream intersection) is detected 
during development of an intersection schedule, the  
intersection scheduler will instead take a locally sub­
optimal decision to mitigate this upstream blockage.  
Full details of this approach to multiagent coordination 

and decision-making can be found in the article by 
Xie, Smith, and Barlow (2012).

Experience in the Field
Figure 5 depicts an example of the hardware setup  
of the Surtrac system in the field. Surtrac runs on 
a separate processor (shown on the bottom shelf of 
the traffic cabinet), and in this case communicates 
through a serial port connection to the hardware con­
troller (sitting on the top shelf in the cabinet). At the 
intersection depicted in figure 5, detection is via 
video cameras (shown mounted at the top of the light 
pole). To communicate with Surtrac processes at ad­
jacent intersections, point-to-point IP radios are used 
(mounted on the mast arm in the intersection that is 
shown). In many urban settings, intersections are al­
ternatively interconnected with fiber-optic cable. The 
intersection shown in figure 5 is also equipped with a 
dedicated short-range communication (DSRC) radio, 
which allows direct communication with similarly 
equipped vehicles (or pedestrians). We will describe 
more recent work with this connected vehicle tech­
nology later in the article.

Surtrac was first pilot-tested in the field in June 2012 
on a nine-intersection network in the East Liberty 
area of Pittsburgh. Performance was assessed by doing 
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Figure 4. An Example Scheduling Problem and Solution.

Adapted with permission from Xie, Smith, and Barlow (2012).
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physical drive-through experiments on the twelve 
most heavily traveled routes through the network, 
using a global positioning system tracking device to 
collect itinerary data. Routes were driven with the 
lights controlled by pre-existing timing plans and by 
Surtrac at multiple times of the day, and over multi­
ple days. As can be seen in figure 6, different levels of 
improvement were observed over different periods of 
the day, but overall, averaging the results weighted 
by traffic volumes, travel times were reduced by over 
twenty-five percent, number of stops were reduced by 
over thirty percent, and amount of wait time was re­
duced by forty percent. Although emissions data were 
not collected, a standard fuel consumption model 
was applied and showed an estimated reduction of 
emissions of about twenty percent. Further details of 
the pilot test can be found in Smith et al. (2012, 2013).

On the strength of these results, we were able 
to obtain additional funding to expand the network 
and in November 2013, the size of the Surtrac-con­
trolled network was doubled to eighteen intersec­
tions (Barlow, Smith, Xie, and Rubinstein 2014). The 
same comparative evaluation was performed, this 
time with the original nine intersections left run­
ning with Surtrac on, in both conditions. As can 
be seen in figure 6, we observed essentially the same 
levels of performance improvement. Since that time, 
the network has been expanded a couple of more 
times, and currently Surtrac controls an intercon­
nected network of fifty intersections, shown in fig­
ure 7. The City of Pittsburgh has recently initiated a 
Smart Spines project that includes a plan to add 150 

additional intersections to the deployment over the 
next few years. In 2015, Rapid Flow Technologies, 
Inc. was founded to commercialize the Surtrac tech­
nology and Surtrac is now deployed in several cities 
in North America.

Extended Schedule-Driven  
Traffic Control Models
Work in recent years has focused on extension and 
refinement of the basic schedule-driven traffic con­
trol paradigm. One thread of research (Hu and Smith 
2017a; 2017b) has examined a problem that arises in 
circumstances when the volume of traffic on the road 
network approaches saturation. Consider an extreme 
situation where an intersection’s approaching road seg­
ments are all filled to near capacity. In this case, the 
aggregate predictive model produced to formulate the 
input scheduling problem is likely to contain a single 
cluster in each competing direction. In essence, the  
problem is no longer a sequencing problem but a  
problem of deciding when to split clusters (or of  
managing queues). To address this issue, Hu and Smith 
(2017a, 2017b) have proposed a hybrid online planning 
procedure that combines schedule-driven control with 
the backpressure algorithm, a state-of-the-art approach 
to maximizing throughput from queuing theory.  
Using queue length, both locally and from down­
stream neighbors, as a basis for weighting clusters asso­
ciated with a given signal phase, a softmax function is 
specified that increasingly biases intersection sched­
uling decisions toward managing queues as traffic 
congestion increases, and extends the schedule-driven 
approach to incorporate the basic guarantee of stability 
provided by queuing theory. In simulation, the hybrid 
approach was shown to outperform the initial baseline 
Surtrac scheduling procedure and the backpressure 
algorithm alone by fifty percent and fifteen percent, 
respectively, in scenarios involving heavy traffic vol­
umes, while providing no performance advantage over 
baseline Surtrac in scenarios with low and medium 
traffic volumes. Please refer to the articles by Hu and 
Smith (2017a; 2017b) for details.

A second research thrust has explored the ben­
efits of using a higher-fidelity predictive model of 
traffic flows. The aggregate representation described 
earlier and used in the initial Surtrac intersection  
scheduling procedure makes a number of simpli­
fying assumptions. For example, to characterize ap­
proaching traffic flows for typical two-way traffic 
phases (for example, east–west, north–south), cluster  
sequences from both constituent directions are 
merged into one composite cluster sequence before 
generating the timing plan (essentially by folding one 
sequence over on top of the other and aggregating 
based on temporal proximity regardless of direction). 
Similarly, only a single cluster sequence is associated 
with a given direction, regardless of the number of 
traffic lanes present. Both of these assumptions sim­
plify the search, but also eliminate opportunities to 
minimize delay. In Goldstein and Smith (2018), a 
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Figure 5. Hardware Setup.
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more expressive real-time intersection scheduling 
approach (called  Expressive Real-Time Intersection 
Scheduling) is proposed, where clusters moving in dif­
ferent directions within a phase are considered inde­
pendently during schedule construction, and cluster 
sequences are attributed to individual lanes in cases 
of multilane approaches. To manage the larger search 
space implied by this higher-fidelity predictive model 
of traffic flows, an A* search procedure is substituted 
for the DP search, and a novel admissible heuristic 
is defined to manage search efficiency. Comparative 
simulation analysis with the baseline Surtrac inter­
section scheduling procedure shows improvements 
in cumulative delay of up to twenty percent in low- 
volume traffic control scenarios, tapering to 0.5 percent 
to five percent in high-volume settings. Full details can 
be found in the article by Goldstein and Smith (2018).

A third direction of recent research has considered 
the impact of exchanging additional information 
between neighboring intersections. The original 
Surtrac network coordination model (Xie, Smith, 
and Barlow 2012) concentrated on communication 
of expected outflow information to downstream in­
tersections. However, timing plans that are developed 

without regard to downstream conditions are suscep­
tible to myopic decision-making and can exacerbate 
downstream congestion problems. An extension of 
schedule-driven coordination protocols to include 
bidirectional information flow is developed in Hu and 
Smith (2019). Under this scheme, an estimated delay 
for each vehicle is computed as an indicator of the 
level of congestion constraining a particular traffic 
flow through an intersection, and this information is 
communicated to upstream intersections at the con­
clusion of every planning cycle. The estimated delay 
of clusters associated with the phase corresponding to 
this traffic flow at the upstream intersection is then 
extended to incorporate downstream estimated de­
lay so as to bias signal phase change decisions toward 
traffic flows that are more likely to move unimpeded 
through downstream intersections. Experimental anal­
ysis has shown variants of this extended protocol 
to significantly reduce network wide delay in high- 
volume situations and to generally outperform the 
original unidirectional scheme (Hu and Smith 2019).

Finally, consideration has been given to the addi­
tional optimization possibilities that exist if the traffic 
signal control system is capable of communicating 

Penn Circle Test Site (Jun 2012):

%
Improv.

Travel
Time

# of 
Stops

Wait
Time Emissions

29% 48% 24%

53% 50% 29%

AM rush 30%

Mid Day 33%

PM rush 23% 9% 36% 18%

Evening 18% 35% 28% 14%

Overall 26% 31% 41% 21%

Bakery Square Expansion (Nov 2013):

Travel
Time

# of
Stops

Wait
Time

Emissions

17% 34% 33% 16%

21% 37% 38% 18%

29% 45% 46% 25%

%
Improv.

AM rush

Mid Day

PM rush

Overall 24% 40% 42% 21%

Figure 6. Initial Results in the Field.



Engelmore Award Article

14  AI MAGAZINE

with vehicles and adjusting their approach speed 
in combination with generation of signal timing 
plans. Previous research has examined the environ­
mental benefits of so-called eco-driving, that is, ad­
justing vehicle speed to reduce the number of stops 
in urban networks based on knowledge of traffic 
signal timing plans (for example, Xia et al. 2013). 
Other work has considered the problem of mini­
mizing delay through an isolated intersection by si­
multaneously determining vehicle approach speeds 
and signal phase change times (Liang, Guler, and 
Gayah 2019). In Hu, Smith, and Goldstein (2019), the 
benefits of dictating vehicle approach speeds in con­
junction with dynamically generated signal timing 
plans is examined and shown to outperform the basic 
Surtrac scheme (Hu and Smith 2017b).

Integration with  
Connected Vehicle Technology

Another major focus of our research over the past few 
years has been integration of real-time adaptive signal 

control with emerging connected vehicle technology.  
As shown earlier in figure 5, a portion of the Pittsburgh 
Surtrac deployment is also equipped with DSRC 
radios that allow direct communication between 
vehicles equipped with DSRC on-board units and 
the infrastructure. The principal motivation for 
such vehicle-to-vehicle and V2I communication is 
safety-related. Each equipped vehicle continuously 
broadcasts a basic safety message, which indicates 
its current location, heading, and speed. If two ve­
hicles notice that they are too close to one another, 
then the vehicle can alert the driver or perhaps take  
evasive action autonomously. Similarly, an equipped 
intersection continuously broadcasts a signal phase  
and timing message, which allows vehicles to antic­
ipate signal phase changes and adjust vehicle speed 
accordingly. But V2I communication also has impli­
cations for mobility. In the future when the majority 
of vehicles (and pedestrians) on the road are con­
nected, the effect on vehicle sensing and adaptive 
signal control will be transformational. The location 
and types of vehicles will be known continuously, as 

Baum Boulevard

Centre Avenue

Penn Avenue
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Figure 7. Current Pittsburgh Surtrac Deployment.
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opposed to the use of contemporary sensing tech­
nologies, which detect vehicles only as they pass 
over specific spatial locations. Unfortunately, this 
future is still likely decades away. Our work has fo­
cused alternatively on opportunities for enhancing 
mobility in the shorter term, when the percentage of 
equipped vehicles on the road is small.

Route Sharing
One such mobility benefit that we are pursuing 
follows from an equipped vehicle’s willingness to 
share its route with the infrastructure. Specifically, 
if a vehicle communicates its route (for example, 
as provided by apps such as Google Maps or Waze) 
to the infrastructure, then we have been able to 
show that Surtrac can move that vehicle through 
the signal network it is controlling substantially 
faster than it would otherwise (on average, twenty 
to twenty-five percent faster; Hawkes 2016). More­
over, unequipped vehicles are not really adversely 
affected and in some cases, benefit serendipitously. 
Finally, simulation results show that as the level 
of penetration of equipped vehicles increases, the 
overall performance of the network rises (Hawkes 
2016). The reason for these mobility benefits is 
straightforward — with the receipt of this vehicle 
route information, uncertainty in the signal system’s 
predictive model is reduced. For example, the system 
does not have to guess whether the vehicle will turn 
left or go straight at the next intersection. The vehicle 
has told it which way it will go. Consequently, the 
traffic signal system can do a better job of optimizing  
relevant signal timing plans. Technically, this is ac­
complished by weighting the clusters that contain 
each route-sharing vehicle in the system’s predictive 
model at downstream intersections along its itinerary 
to reflect their greater certainty (Hawkes 2016).

Capabilities like this ability to use route infor­
mation to expedite vehicles can provide incentive 
for travelers to be earlier adopters of connected ve­
hicle technology. Consider a first-/last-mile freight 
company. This company knows its routes through 
the city, so if its willing to equip its fleet, a real-time 
adaptive signal system that supports route sharing 
can immediately improve its operations. Likewise 
for ride-hailing and package-delivery applications. 
We are currently working with partners to develop a 
pilot demonstration in the field.

Smart Optimization of Bus Movements
We are also working with the Port Authority of Alle­
gheny County to equip the buses that move through 
the Pittsburgh Surtrac deployment with DSRC radios, 
and use V2I communication as a basis for smart transit 
optimization. Whereas commercial signal priority 
systems generally give unconditional priority to an 
approaching bus at the expense of all other traffic 
at the intersection, our goal is to achieve a more 
balanced and equitable approach to expediting bus 
movements through the intersection.

As a starting point, our focus has been on use of 
real-time bus information to more accurately predict 
an approaching bus’s arrival time at the intersection, 
and integrating this more-accurate predictive model 
with route sharing (because we have access to bus 
routes). One complicating aspect, and the biggest 
source of uncertainty in predicting bus arrival times 
at the intersection, is the presence of near-side bus 
stops, which are common in Pittsburgh. This has led 
first to an analysis of trends in the Port Authority 
historical bus dwell-time data for different bus stops 
(Isukapati et al. 2017), and more recently, to the 
development of a reliable online technique for pre­
dicting bus dwell times from recent samples using 
a hierarchical Bayes net approach (Isakupati et al. 
2019). We are currently integrating this dwell-time 
model into Surtrac’s real-time planning loop.

Safe Intersection Crossing
A third application of connectivity that we have been 
pursuing is support for safe intersection crossing. We 
have developed a smartphone app called PedPal that 
allows pedestrians with disabilities to directly com­
municate with signalized intersections and actively 
influence traffic control decisions. Most basically, 
PedPal knows the speed at which its user travels and, 
using geometric data about the intersection received 
from the infrastructure, can communicate how much 
crossing time is required in addition to crossing intent. 
The traffic signal system, in return, will guarantee 
that sufficient time is allocated for crossing when the 
user gets the crossing signal. Because a smartphone 
has localization capabilities, PedPal also monitors its 
user’s crossing progress. In the event that the user 
veers outside of the crosswalk, PedPal alerts the user, 
and because PedPal is connected to a real-time adap­
tive traffic signal control system (that is, Surtrac), the 
crossing time can be dynamically extended if slower 
than expected progress is detected. Finally, just like 
the vehicle route-sharing concept discussed herein, 
PedPal can import route information from pedes­
trian navigation apps, use it to anticipate the user’s 
arrival time at the next intersection, and factor that 
information into the timing plan that Surtrac gen­
erates to streamline the time required to cross.

PedPal provides multiple interaction modalities to 
users with different types of disabilities, including a 
visual interface, voiceover capability, and haptic sig­
naling. User interaction can be personalized to meet 
each user’s needs and preferences.

Figure 8 illustrates the basic operation of the PedPal  
app. Upon opening the app by tapping on the PedPal  
icon or asking Siri to open the app (figure 8a),  
PedPal begins listening for messages from nearby in­
tersections. The “No nearby intersections detected” 
message (figure 8b) indicates that the device is not 
currently in range. When the app is brought within 
range of an approaching intersection’s message 
broadcasting range, the app uses this information to 
display possible crossing options to the user, along 
with context about when the crossing direction is 
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going to change (figure 8c). Upon arrival at the in­
tersection, the user indicates crossing intent by tap­
ping on one of the presented options (selected either 
visually or via audio voiceover). When the selection 
is made, the app automatically communicates both 
the crossing option selected and the time required, 
and then the display moves to another screen that 
provides guidance relevant to the selected crossing 
phase (figure 8d). In the example shown in figure 8d, 
the user has selected a future crossing phase, so the 
app warns the user not to cross. If voiceover is en­
abled, this message is also conveyed through audio. 
After delivering this message, the app goes silent but 
then starts to count-down once the crossing time is 
imminent to alert the user to get ready to go. When 
the crossing signal switches to the user’s direction, 
the app announces that it is OK to cross (figure 8e). 
At this point, the app shows the crossing time that 
has been allocated and begins a countdown of the 
time remaining until the next signal change. In the 
example shown in figure 8e, the user’s request for 
a thirty-second crossing time has been granted by 
Surtrac and installed as the new minimum crossing 
time for this cycle.

In initial user field tests, the PedPal app used a 
DSRC sleeve coupled to a smartphone to support 
connectivity to the infrastructure. More recently, a 
second cellular V2I communication option has been 
added to provide a simpler hardware solution. Please 
see Smith et al. (2019) for further details of this work.

The Bigger Picture
The work summarized in this article aims fun­
damentally at increasing the mobility of people in 

increasingly congested urban environments through 
smarter traffic signal control technology. It envisions  
increasingly more connected and more automated  
transportation systems in the future, and as connected 
vehicle (and connected pedestrian) technologies 
proliferate, we anticipate that the traffic signal net­
work will become the gateway to travelers for real-time 
traffic information. There are tremendous opportuni­
ties for congestion mitigation through development 
of new technologies that enable online analysis of 
network performance, real-time incident detection, 
dynamic rerouting, and greater traveler safety. As au­
tonomous vehicles emerge on the scene they will 
depend just as heavily (if not more) on these same 
capabilities. It is this vision of the future that continues 
to drive our research in this area. We strongly believe 
that smart transportation infrastructure is the key to 
future urban mobility.
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Hu-Chieh Hsu, Joshua Lerner, Arvindh Mahendran, 
Pablo Nanez, Hana Rudova, Pranav Shah, Joseph 
Zhou, Eli Bronstein, and Conor Igoe. This article is 
an expanded version of the 15th Robert S. Engelmore 
Memorial Lecture, which I presented at the 2018 Con­
ference of the Association for the Advancement of 
Artificial Intelligence, New Orleans, Louisiana.

Note
1. Given an arbitrary set of input clusters, it is not always 
possible to satisfy maximum time constraints on phase du­
ration, and the just-mentioned DP search does not consider 
this constraint. Instead, these constraints are checked once 
a solution is produced, and if violated, the first offending 
cluster is split and the DP procedure is reapplied. See Xie 
et al. 2012 for details.
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