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Abstract 
The enterprise of developing knowledge-based systems is 

currently witnessing great growth in popularity. The central 
unity of many such programs is that they interpret knowledge 
that is explicitly encoded as rules While rule-based program- 
ming comes wit,h certain clear pay-offs, further fundamental 
advances in research are needed to extend the scope of tasks 
that can be adequately represented in this fashion This article 
is a statement of personal perspective by a researcher inter- 
ested in fundamental issues in the symbolic representation and 
organization of knowledge 

We view knowledge based systems in terms of three re- 
lated spaces: Concepts, Rules, Examples. Section 1 deals 
with knowledge based systems where rules play a promi- 
nent role. Section 2 discusses the organization of the rule 
space. Section 3 displays a wide variety of rule operations 
in addition to the rule interpreter which applies rules. Sec- 
tion 4 concentrates on the evolving nature of knowledge 
and identifies several forces of change. It includes an ar- 
gument that systems must be designed to respond well to 
forces of change. 

The final section focuses on how to structure the con- 
cept space and the example space to support evolutronary 
change. Concepts need to be specified not only in terms 
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of the more conventional logical definations for well-defined 
concepts, but also in terms of the prototypes and deforma- 
tions model for amorphous and open-textured concepts. 
The utility of a well-stocked store of examples and the 
ability to generate new examples are emphasized. The 
proper organization of all three spaces and their interrela- 
tionship appears to be a good focus for further research in 
AI. 
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Knowledge based systems may be usefully viewed in terms 
of three interrelated spaces. 

Figure 1. 

sulted in a more understandable presentation Andy Haas, Frank 
Ritter, Mark Burstein and Albert Boulanger also gave me useful 
comments for the final version. I am indebted to Professor Ejan 
Mackaay of the University of Montreal for referring me to the inspir- 
ing book by Twining and Miers. 

AI Magazine Volume 6 Number 3 (1985) (© AAAI)



1. Motivation 

Expert Systems have demonstrated through a number of 
successful prqjects that 

For certain types of knowledge intensive tasks, their 
reasoning pattern can be characterized as a sequence 
of decision making steps and such knowledge can be 
encoded using a urliform format of rules; 

When such rules are at an appropriate level of detail, 
they can be utilized to offer explanation for how certain 
hypothesis are arrived at and why certain goals arc 
being pursued; 
The rule form of programming supports task decom- 
posztion and allows several engineers to work on parts 
of the task with a greater degree of independence than 
when using conventional control flow programming; 

To a certain extent, intertwining of task specification 
and program development is feasible, thus reduczng the 
tame needed for getting running prototypes. 

Figure 1 illustrates types of tasks that typify current 
expert, systems. 

Knowledge based systems may be usefully viewed in 
terms of three inter-related spaces: Concepts, Rules and 
Examples. We use the term space because the elements 
in each are organized systematically by means of relations 
and transformations that lead from one element to another 
(intra-space structure). Further, there are interesting re- 
lations between the spaces. This framework allows us to 
understand where basic research in knowledge represcnta- 
tion has focused (concepts, rules) and allows us to identify 
a focus for future research (examples). 

We argue that rational design for a knowledge based 
system must prepare it for change and evolution. To sup- 
port evolution and change, the space of concepts must 
be buttressed by the space of examples. We elaborate 
an argument that concepts need be related to prototypes. 
Moreover, the ability to generate new examples by deform- 
ing known ones is an important capability needed in such 
systems. This leads to a perspective that calls for a tight 
coupling between concepts and examples utilizing a theory 
of prototypes and deformations. This is a useful topic for 
research. 

In the final section, we demonstrate the possible rich- 
ness of the relations in the example space. Very little is 
miderstood presently about these relations in the example 
space and a fruitful set of research problems remain open. 

2. Nature of Rules 

The builder of a new expert system for a specialized task 
has the choice of an array of system building tools coupled 
with advice on how to go about the process of building one. 
A good sampling of current tools and their evaluations as 
well as ‘maxims’ can be found in Chapters 5 and 6 of 
Building Expert Systems (Hayes-Roth et al., 1983). 

The prominence of rules is the striking unity of all 
these tools. Thus my point of departure for exploring the 
shape of things to come is an examination of the nature of 
rules themselves The following definition of a rule, taken 
from p. 190 of The Handbook of Artaficzal Intellzgence is 
fairly typical. 

A production rule is a statement, cast in the form “If 
this condition holds, then this nctzon is appropriatr.” 

What is the difference between these If-Then rules and 
the If-Then statements of programming languages? Both 
are rules interpreted in context. Their difference lies in the 
different. ways the context of a statement is structured, 
modified, and utilized. For programming languages, t,he 
interpreter supplies a control flow that flows sequentially, 
takes conditional branches, and goes around in loops. If, 
at one time point in the execution of the program, several 
If-Then statements have their condition part satisfied, the 
interpreter only executes the one statement where control 
resides at that time. In fact, since only one statement 
has the control, the condition part of only that statement, 
is evaluated at that time For production rule systems, 
the context is a data context. This context is used to de- 
cide which among the cnablcd rules is to be selected for 
execution. The data context, consists of a working mem- 
ory which is a symbol structure repeatedly updated 1)~ 
the action of rules. In many systems, the context con- 
tains substantial additional information which includes rc- 
cency of data elements, specificity of data clement+ rank- 
ing of rules, and other information about the organization 
of rules as well as concepts used in the task. 

On the one hand it is simple to read a rule indepcn- 
dently as “If condition holds, then this action is appro- 
priate,” but on the other hand it is quite complicated to 
understand the role of this rule in the overall function- 
ing of the rule system. It is useful at this point to shift 
the way in which we read a single rule to be “If condition 
holds, then the computing agent may apply this action.” 
The introduction of this modality into the reading of rules 
prompts us to examine what other modalities might be 
introduced in such rules. 

Forms of Rules 
By examining ordinary usage of rule-like statements in hu- 
man communication, we can readily come up with other 
modalities to use in rules. Rules can be used to communi- 
cate not only Permissions, but also to specify Obligations 
as well as Prohibitions. 

A statement of obligation has the reading “If condi- 
tion holds, the agent must do this action.” A statement of 
prohibition has the reading “If condition holds, the agent 
must not do this action.” I also envision a hybrid form of 
rule which is even more useful. It specifies an obligation 
with choice, “If condition holds, the agent must do one of 
the following set of actions.” In order to allow this greater 
range of rule forms, further research needs to be done on 
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Type: 
Method: 
Characteristics: 
Examples: 

Type: 
LMethod: 
Characteristics: 
ExampIes: 

Tin=: 
Method: 
Characteristics: 
Examples: 

Type: 
LMethod: 
Characteristics: 
Examples: 

Type: 
Method: 
Characteristics: 

lnlerpretatiori Of ~ll%WlX?iD32tS 

Hypothesis selection and ranking based on evidence 
C’nreiiable: incomplete: possibly contradictory data 
Well-log interpretation, X-r2y crystallography 

Diagnosis 
Me2Surement selection, IntKp%tation 

Often involves using modei of system organization and behavior 
Circuit faults. fnfec$ions and dise2ses 

Xonitoring 
Diagnosis, Corrective Action, 
Real-time ogeratic\n, Reliabie fiJnctionicg 
Production line monitoring, air tra%c control 

Planting 
Composition from sl;bplms and unit actions 
M2q comples choices that azecect each other 
Robot piannir;g: route pianniug, experiment pianning 

De@&- 
Interactive design aids that ut,ilize iIdS 

Design ruies provide constraints as weii 2s guidance; 
Mapping hctweeu structure and function is Wilt!&; 

Maintenance of &et-native partial designs is quite compiex. 
Examples: Circui’ design, -4rchitectural design 

Table 1. 

how to set up a sufficiently strong sense of context so that 
conflicting obligations and permissions can be sensibly rc- 
solved. A good start in this direction can be found in 
(McCarty, 1983). Further developments in this direction 
could enable us to specify planning problems coupled with 
advice on what may be done and what must not be done 
in any given situation. 

Rule forms have been used to model causal processes 
of organisms as well as mechanisms. Causal rules have 
been attributed the form “If condition holds then it will 
cause the following action.” Here, not only a subtle change 
occurs in the modality becoming “cause,” but the comput- 
ing agent is not the agent of the action mentioned in the 
rule. 

This gives rise to yet another form of rules, which al- 
lows mentioning the agent of the action specifically. “If 
condition holds, then this agent may/must/must-not do 
this action.” Such rule forms could be used for multi-agent 
planning (Konolige & Nilsson, 1980). 

Some rules are introduced to define useful concepts. 
If the connective between the antecedent and consequent 
can be read as “implies” or “if and only if,” rules carry 

a suitable subsumption or unifiability relation. 

Hierarchies of Rule Sets 

Large collections of rules accumulate in capturing knowl- 
edge in depth for any substantial real world problem. In 
realistic task domains we cannot make assumptions about 
the “correctness” and “completeness” of knowledge pre- 
sented to the program (Sridharan & Bresina, 1982). There 
is also a need to ensure that increased knowledge is not a 
liability to the program. 

Rules may be parceled according to the identification 
of what the source of the knowledge is. To the extent that 
the different sources of knowledge derive from distinct per- 
spectives on the task, their recommendations may in fact 
not agree. Hierarchical structuring of these sources pro- 
vides a convenient way of selecting frorn multiple rules. 
If the hierarchy is interpreted as a hierarchy of author- 
ity, then that (obligatory) rule with highest authority is 
selected. If the hierarchy is interpreted as one of spccial- 
ization, then the more specialized source of knowledge will 
be seen to provide the more accurate, reliablr (permissive) 
rule. 

logical import. Sets of rules can be organized according to A quick examination of how regulatory statutes are 

110 THE AI MAGAZINE Fall, 1985 



Function A: Task decomposition and allocation. 

A given compound task can be accomplished by solving parts separately and then co1hinir.g the resuits. Comp;rting 
agent,s must, be selected appropriateiy to mat,ch t,he task that needs to be solved. 

Function B: Hnrformation sharing or communication. 

Rules produce results or hypotheses that are useful to others. Communication is directed or undirected a~ in blackboard 
IYlWh.IliS~S. 

Function C: Resource Allocation. 

Resource allocation is often guided by policy statements that is best separated and associated with specified category 
of resources, rather be buried in t,he programs that call for resource allocation and utilization. 

Function ID: Scheduling, Locking and Other Protocols. 
Rules govern proper behavior among agents that can influence each other in the course of their normal behavior. 

Fbxtion E: Protection and Access ControX. 

Clobsi control over permission to access and utilize resources and information is esecred by these rules. 

Flmction F: Error Handling and Hnterrupt Processing. 

inevitably rule interpreters produce undesirable or unexpected results. Tht~e ruies are for recognition artd remedying 
of such situations. 

Function G: Descriptive models. 
Causal as well as structural rules describe the environment in which the system is operating. 

Function of rules in computer software. 

Table 2. 
--- 

encoded in the legal establishment shows how authority occur among the rules within a rule set. 
structure and specialization is set up. Rules about the han- 
dling of your bank account via electronic banking is gov- 
erned by federal laws governing interest rates and audit- 
ing requirements and income tax disclosure requirements; 
interstate regulations on banking transactions that cross 
state boundaries, state regulations concerning the same; 
the bank policy on hours of operation, frequency of access 
to account; local branch policy on limits to amounts ten- 
dered and overdraft privileges; social conventions about 
waiting in line for access to the electronic teller; personal 
preferences about what, where and how much and so on. 

Clancey (1983) identifies several other types of hier- 
archical organization of rule sets aimed at various pur- 
poses: consistency at data-directed interpretation, elimi- 
nation of redundant effort, efficient splitting of hypothesis 
groups, focusing on problem features, opportunistic trig- 
gering, task hierarchy to facilitate planning, context spe- 
cialization for determining task relevance. 

Space of Rules 
A set of rules that are structured by relationships among 
the rules is described as a space of rules. Whereas the dis- 
cussion of hierarchy emphasizes the systematic relation- 
ships that occur among a collection of rule sets, the con- 
cept of rule space highlights the internal relationships that 

Rule space contains sets of rules, organized according to 
the function of the rule sets and their attributes. 

Figure 2. 
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:oncept space contains a set of concepts organized in fa- 
liliar ways via hierarchical and associational links. 

Figure 3. 

Purposes of Rules 

For the present discussion, let us concentrate on the pur- 
poses of rules and a few other attributes of rules. Clancey 
(1983) presents a detailed analysis of the rule sets of MY- 
CIN in an attempt to provide an enhanced capability for 
explaining. MYCIN’s explanations are about how the sys- 
tem arrived at the conclusions and how it plans to use the 
information being sought. Anyone wishing to understand 
the system is not likely to find the display of rule applica- 
tions to be adequate explanation. It is the rules themselves 
that are in need of explanation. Enhanced explanation ca- 
pability is achieved by viewing the operation of the rule 
system as following a strategic plan. Strategic knowledge 
is embedded implicitly in the internal structure of rules 
and in the organization of the rule sets. This knowledge 
is made explicit and cast in domain-independent terms by 
Clancey. This not only provides economy in representa- 
tion but also allows explanation to be at an appropriate 
level of generality. 

A central fact that eqrges from his study, repeatedly 
discovered by anyone who has attempted to explain rules, 
is that rules have purposes which ought to be encoded 
by the rule author. We present below (Tables 1 and 2) 
two sets of purposes that arise in two areas of application: 
Modeling of computer software and legal regulations. The 
reader may find it interesting to see the parallels in the 
two sets of purposes. 

Attributes of rules 

Most researchers who have examined the functioning of 
organizations, be they corporations, family units, or other 
institutions like schools or factories, have identified that 
one of the key elements in understanding the function- 
ing of such organizations is identification of which rules 
are bendable and which rules are inflexible. The inflexible 
rules are all-or-nothing rules that cannot be compromised. 
For example, in managing a factory job shop, most rules 
that set policy, involving such criteria as economy, speedy 
operation, low inventory, allowing time for maintenance 
procedures and so on, are recognized to be bendable. Each 
criterion sets ‘up objectives which only provide directions 
to pursue, but do not dictate absolute objectives to be 
met. Incorporation of bendable rules into rule systems 
is investigated by Fox (Fox, 1982, Fox et al., 1982; Fox, 
1983). 

Multiple rules are often written that cover the same 
situation, they differ in their speczficity or generality. This 
can be contrasted with precisaon or vagueness of the rules. 
Specificity refers to the coverage of the rules, that is the sit- 
uations to which a rule will apply. Precision refers to how 
well the situations to which a rule will apply can be dctcr- 
mined. Rule systems need to be set up so that the internal 
relations using specificity/generality, precision/vagueness 
and common/conflicting purposes are used to formulate 
the space of rules. 

Example space contains a set of examples, procedures for 
construction and transformation, similarity measures and 
a classification of examples. 

Figure 4. 
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Function A: Effecting private arrangements. 

Rules about contract facilitate orderly dealing among agents. 

Function B: Information sharing regulations. 

l?ree fiow of appropriate information is essential to the functioning of a community and these regulations govern this 
p!i~pOS~. 

Function C: AllocaCon of public funds. 

Regulations are set up to govern how public funds may be used. Regulations are also set up to decide on priorities 
among communal tasks when resources are Iimit&. 

Function D: Regulatory codes. 
Various agencies set up as watchdogs prescribe regulatory codes t,hat govern proper behavior by agents. Misbehavior 
can result in harm that would be hard to rectify; prevemive and reg&atory rules are used. 

JY’unction E: Prohibition and punishment of bad conduct. 
This is yet another body of ruks governing interpersonal and inter-institutional interaction. 

Function F: Grievance and remedial procedures. 
The 1ast mentioned. hut most visible aspect of law governing courts and their operation. This includes criminal and 
penal codes. 

Function of legal rules and regulations. 

Table 3. 

3. Rule Handling tion. Adequate explanatiou of rules requires knowledge of 

So far we have spoken about rules, examiniug their inter- 
nal form as well as their attributes and relationships. In 
the earlier section, we also spoke about the Yule inter- 
preter” emphasizing how it interprets each rule by adding 
a “context” to it. Whereas rule application is the core of 
any rule interpreter, there are several other things to do 
with rules. I draw my inspiration as well as information 
from a delightful book by Twining and Micrs (1982), How 
To Do Things With Rules. 

Once a rule set is in existence, a rule interpreter may 
be used with it. A rule interpreter is typically endowed 
with the following operations on rules: Rule retrieval, rule 
interpretation, and rule application. Rule retrieval is the 
method of selecting, identifying, and testing rules that are 
candidates for execution. Rule interpretation adds the 
context information (recall the working memory, data re- 
cency, rule ranking information, task or subgoal informa- 
tion) and thereby allows selection of the most appropriate 
rule to execute. Rule application is the performance of the 
action specified in the rule. Several alternative methods 
of organizing all of these operations are recorded in the 
literature (Forgy, 1979). I invite the reader to ponder sev- 
eral other possible operations ou rules (Figure 4) that take 
place on rules during the life cycle of a rule system. 

Since we speak of the life-cycle of rules, naturally there 
are operations that are concerned with the birth of rules, 
their death, and their change and growth as well as utiliza- 

rule attributes such as purpose and specificity. What is the 
knowledge required to support the rest of the life-cycle ac- 
tivities? Typically, knowledge about the rules and about 
the rule sets (e.g., the history of rules and their justifi- 
cation, collection of examples that support a rule). Such 
knowledge often goes under the label M&a-Knowledge. In 
chapter 7 of the book (Hayes-Roth et al., 1983) cited ear- 
lier, we find the statement with which we heartily concur: 

The program itself must assume more and more 
of the burden of understanding its own behavior, 
documenting and justifying itself, and even modi- 
fying itself.. . . Experts arc . . . capable of explain- 
ing, learning, reorganizing, reformulating, all the 
while rating the progress they are making. 

Another fairly long-term research direction is the con- 
struction of facilities to encode such meta-knowledge ex- 
plicitly. In a later section of this article we address the 
use of a space of examples to support the rest of life-cycle 
activities. Let us turn our attention now to the evolving 
nature of rules during their life-cycles. 

Evolving Nature of Knowledge 

Any large real-world knowledge base of rules has derived 
its knowledge from a collection of experts. There is hardly 
a knowledge base that represents the thinking of one indi- 
vidual. Let us acknowledge that thcrc is great intellectual 
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Evolving Systems of Knowledge 

Economic, social, technological, and other issues affect how we carry out Interpretation, Diagno- 
sis, Monitoring, Planning and Design tasks in any chosen task domain. Knowledge systems are 
continually evolving in the short term and in the long term, responding to these forces of change. 

Figure 5. 

diversity in men’s actual modes of thought. The knowl- 
edge encoded in a rule system reflects all the diversity 
of the several experts who contributed to it. For this to 
reach a stable state each expert’s contribution has to bc 
mended, bended, adapted and coerced to reside peacefully 
with those of the others. Thus there is an evolutzonary 
process inherent in the process of the creation, testing and 
validation of these rules. 

Ah! What happens once a rule set is formulated and 
checked out? I believe that no rat,ional body of knowledge 
once created and validated to conform to the needs of the 
moment will last in that condition for long. I agree with 
the claims of Toulmin (1972) who says (p. 84): 

The rationality of a science (for instance) is em- 
hodicd not in the theoretical systems current in 
it at particular times, hut in its procedures for 
discovery and conceptual change through time 
. . . The intellectual content of any rational activ- 
ity forms neither a single logical system, nor a 
temporal sequence of such systems. Rather, it is 
an intellectual enterprise whose ‘rationality’ lies 
in the procedures governing its historical develop- 
ment and evolution. 

There is an analogy, for instance, in how our empha- 

sis in programming has shifted radically from the “Art, of 
Programming,” to the still developing “Art of Software 
Engineering;” that is, from how to construct programs to 
how to maintain and modify them. The need for evolution 
is the very bane of large software systems, which made no 
provision for this. Current rule-based expert syst,ems cap- 
ture only a snapshot of the evolving state of knowledge 
relevant to the task. A system, once built, will be crying 
out for change and adaptation to keep pace with the con- 
tinual flux of our social matrix. Thus, the task of expert 
system builders will not be accomplished by conquering 
task after task, in the hope of encoding knowledge about, 
all interesting tasks in rule form. Such a journey through 
the territory of application tasks will not reach conclu- 
sion or convergence. The knowledge needed for successful 
in application areas will continue to evolve long after the 
snapshots are taken. As Toulmin says, the essential knowl- 
edge of a task area lies in its procedures governing change 
and adaptation and cannot be captured in snapshots. 

Rule systems have been advertised to have as their 
virtue easy modifiability. Yet, in practice this is a claim 
hard to substantiate. True, it seems that rule systems, 
with their reliance of a data context rather than control 
context for interpretation of statements, bring us one st,ep 
closer to this goal of easy modifiability. But we need to un- 
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dcrstand in greater depth the nature of change and adap- 
tation that will inevitably take place. 

Forces of Change 

Economic fuctors exert a great, deal of influence on what 
course of action we select at any time; and these are in 
constant flux. Socaal values also continually change, some- 
times exhibiting discontinuity. Both of these forces require 
us to continually revise what goals we pursue and how we 
assign priorities to several competing goals. For exam- 
ple, answers to the following questions reflect a mixture 
of values and will continually change with time: Whether 
to use aerosol additives in spray cans, how much to rely 
on drug-based treatments, whether CRTs give out exces- 
sive radiation, to what extent nuclear power plants ought 
to be sabotage proof, whether auto-emissions ought to be 
controlled. In addition to these, we find technology itself 
a source of evolutionary pressure. Technological chanyes 
are rapidly introducing new instruments with which mea- 
surements can be taken and producing new instruments 
for taking action. When a new instrument is introduced 
to measure pressure in the human eye, it affects the ex- 
pert system that was designed to classify occurrences of 
Glaucoma in patients. When a new technique is designed 
to reconfigure circuits in wafers after they are fabricated, 
expert systems for designing circuits need to account for 
this fairly radical change. 

These economic, social, technological and other issues 
affect how we carry out Interpretation, Diagnosis, Moni- 
toring, Planning and Design subtasks in any chosen task 
domain. Is the only way to respond to change and adapta- 
tion to start afresh and build anew? That would be clearly 
irrational. The essence of being rational is to prepare for 
change. We quote Toulmin again: 

A man demonstrates his rationality, not by a com- 
mitment: to fixed ideas, stereotyped procedures, or 
immutable concepts, but by the manner in which, 
and the occasions on which, he changes those ideas, 
procedures and concepts. 

One more specific example is worth noting, just to 
clarify that I am not speaking only of long-term changes in 
rather distant social goals or values. I am actually speak- 
ing of very real changes that occur within a brief span of 
time. The span can be so short that by the time the ex- 
pert system is developed and tested, a change might have 
actually occurred. The t,hesis of Karen Kukich (1983) re- 
ports on a rule based system, ANA, that was designed to 
generate natural language reports of the day’s stock mar- 
ket activity. It takes as input data from the Dow Jones 
News Service and produces a three-paragraph summary in 
English. She cites the following (p.115): 

On June 24, 1982, the volume of trading on the 
New York Stock Exchange was 55,860,OOO shares 

The Wall Street Journal interpreted this volume 
as “active trading”; ANA interpreted this as “mod- 
erate trading”. The reason for this difference is 
significant. ANA’s report was actually generated 
in December of 1982. In August of 1982, a dra- 
matic surge in the volume of trading on the stock 
market took place It became a common occur- 
rence for volume of shares traded to break the 
100 million level When t,hat pattern persisted, 
ANA’s semantic inferencing production rules were 
adjusted to reflect the current situation Thus, a 
trading level of 55 million may have been active by 
the standards of June 1982, but was more likely to 
be considered only moderate by December’s stan- 
dards. 

This distinction in scrnantic interpretation over 
time serves to illustrate the continually adapting 
and evolving nature of both semantic and linguis- 
tic knowledge To be realistic, a knowledge based 
report generator should be programmed to adapt 
automatzcally [emphasis added] This would not 
be difficult in the case of interpreting volume lev- 
els It would require a simple calculation to de- 
termine the average volume level over the past 
three months, for instance, each time a seman- 
tic interpretation is needed. However, it is not. 
only semantic knowledge that must, bc adapted to 
a changing enviromnent , but also linguistic knowl- 
edge. Words and phrases go out of vogue, in re- 
sponse to novel developments and novel use of 
metaphor This remains a more difficult problem 
to be solved by a knowledge-based report genera- 
t,or. 

The force of this example comes from three dimen- 
sions. Firstly, it is quite persuasive in displaying a need for 
system to adapt automatically. Secondly, it suggests Ian- 
guage is evolutionary in society-a fact often ignored con- 
veniently in natural language comprehension/generation 
systems. Finally, it shows that in the short period of time 
required to engineer a knowledgr base (six months in this 
example) significant changes can already have taken place. 
Knowledge based systems may ignore evolutionary forces 
only at their own peril! 

5. Concept Space: Prototypes + Deformations 

If a perfect rule is one immune from change, there is no 
perfect rule. What qualities can a rule have that would 
make it immune from being changed? If a rule can be cast 
in a fixed form and ncvrr changed, we might think of it as 
being a perfect rule. A rule is perfect if 

0 it has a single clear purpose; 
l it is clearly and precisely expressed and its context of 

use is clear and precise, leaving no room for doubt or 
any interpretation; 
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In the short period of time required to engineer a knowledge base, six months in this ex 
significant changes can already have taken place. Language is evolutionary in society. Kna 
base systems must adapt to changes. 

Figure 6. 

:ainple, 
lwledge 

l it achieves its purpose without causing any (undesir- own arguments based on the idea of evolving systems of 
able) side-effects; knowledge. 

l the purpose of the rule is constant. There is no per- Rules and their purposes are formulated using an un- 
feet rule; to speak of one is to speak of only idealized derlying set of concepts; the meaning and interpretation 
fiction. of the rules depends crucially on the meaning attached to 

these concepts. Several knowledge representation systems 
How might one build a knowledge base to be amenable (see especially Tsotsos, 1983) have given attention to the 

. . ^_ 
to change? This question, a central one, may be para- 
phrased as, How might one build a knowledge represen- 
tation system in which one could support a wide range 
of rule-handling techniques (see Figure 4) including: Rule 
creation, assimilation, interpretation and rule adapting? 
In this section, we propose that the answer lies in (a) struc- 
turing the concept space to have significant connections 
to the example space, and (b) supporting various forms 
of example-based reasoning. Example-based reasoning in- 
cludes seeing similarity between sets of examples, judging 
which similarities and dissimilarities are significant, and 
generating new examples to meet stated constraints. The 
remainder of this section advances a proposal that a con- 
cept space needs, in addition to the usual logical defini- 
tions, a prototypes+deformations representation. There 
is support for this proposal coming from writers in philo- 
sophical logic, philosophy of science, cognitive psychology 
and philosophy of language. We are adding to these our 

modeling ot concepts, especially in terms of the internal 
structure of concepts (slots, fillers, modifiers, constraints) 
as well as the relationships that interrelate concepts (in- 
clusion/exclusion, specialization, part/whole, associations, 
etc.). In defining concepts, however, these systems are pre- 
dominated by the thesis of “logical definitions,” z.e., a con 
cept is defined by an expression that provides “necessary 
and sufficient” conditions for classifying a given situation 
as an instance of this concept. In some systems concepts 
can be defined with weights associated with attributes, and 
these allow conclusions about concept membership stating 
a degree of confidence about the conclusion. Yet, the expe- 
rience we have to date reveals that most concepts in use by 
us do not have stable necessary and sufficient conditions. 

Wittgenstein (1953) argued eloquently about how at- 
tributes of instances of “games” are neither individually 
necessary nor jointly sufficient conditions for recognizing 
games as such. He used the phrase “family resemblances” 
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invariant description 

Concepts are “defined” not only in terms of their logical expansion but also 
in terms of prototypical examples and systematic transformations among them. 

Figure 7. 

exemplar 

to call attention to the fact that two instances of a concept be seen to be central and fixed about terms. 
may share a number of attributes in common thus resem- 
bling each other; but all the instances taken together may 
not have a single attribute in common, thus none of the 
attributes is a necessary one. Peter Achinstein (1968) has 
examined concepts in science, typically object and sub- 
stance names such as “insect” and “copper,” measure- 
ment terms such “velocity” and ‘%emperature,” as well as 
abstract concepts such as “reversible process” and “rigid 
body.” He concludes that attributes cited in a definition 
will not be logically necessary nor logically sufficient, but 
for the most part relevant. To reason about the presence or 
absence of a given attribute and its effect upon the classi- 
fication of a situation, one must understand the centrality 
of this attribute for the concept. Lakatos (1976) makes a 
case that even in mathematics, a term like “polyhedron” 
is used in conjectures, proofs as well as counterexamples, 
without it having a fixed or precise meaning. As the mean- 
ing changes, the central characteristics begin to be more 
sharply understood. Our own explorations into the nature 
of legal argumentation has also helped us rediscover the 
fact that most legal concepts are notoriously open-textured 
(Hart, 1961). Furthermore, legal rules deliberately intro- 
duce hedge words (reasonable length of time, due care, 
substantially the same condition) diluting whatever might 

Rosch (1976) has studied the structure of human knowl- 
edge about categories of real-world objects, such as guitar, 
hammer, lamp, eagle. She states that 

Categories are coded in cognition in terms of pro- 
totypes of the most characteristic members of the 
category. That is, many experiments have shown 
that categories are coded in the mind neither by 
means of lists of each individual member of the 
category nor by means of a list of formal criteria 
necessary and sufficient for category membership 
but, rather, in terms of a prototypical category 
member. The most cognitively economical code 
for a category is, in fact, a concrete image of an 
average category member. 

Benjamin Cohen (1982) has taken such analyses far- 
ther, by examining what sorts of computational represen- 
tations might be useful for capturing such open-texture. 
He has examined probabilistic as well as fuzzy-set models 
of the relation between attributes and concepts, favoring 
more of the structured concept ideas currently being ex- 
plored in several knowledge representation systems. In 
our own work (Sridharan, 1982; McCarthy et al, 1981), 
we have undertaken to extend such a structural model, 
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by allowing references to “prototypical” exemplars and 
knowledge to produce “variations” from them. In deciding 
whether to classify an instance as a member of a concept, a 
match is made to a closely matching prototype, but differ- 
ences and similarities all need to be justified by means of 
transformations applicable to the prototype. Such a the- 
ory attempts to provide a constructive meaning to the no- 
tion of fuzziness of instance membership or centrality of at- 
tributes. The theory speaks of the “strain” induced by de- 
formations on the prototype and the “strength” of generic 
as well as specific deformations that enter into the model. 
The thesis work of Donna Nagel, (in progress) is one at- 
tempt to lend computational sense to this model. She also 
identifies several important algorithms for example-based 
reasoning. 

Space of Examples 

Stored examples form the backbone of experiential knowl- 
edge that can support rule construction and modification. 
The utility of a well organized stock of examples lies in 
giving a system the ability to cope with both open-texture 
and the forces of change. The ability to generate new ex- 
amples from a stock of old ones is also crucial. It is appro- 
priate now to comment on the space of examples and to 
discuss the structuring relations that run between exam- 
ples. Rissland (Michener, 1978; Rissland, 1983) has argued 
for the centrality of this space for all learning systems. In 
speaking of “constrained example generation” she under- 
sc.ores the importance of generating new examples that 
suit the purposes that arise. 

Rissland illustrates the following types of examples, 
that are especially relevant to the structuring of mathe- 
matical knowledge. 

a Startup examples are grasped immediately when study- 
ing the task domain for the first time; they are highly 
suggestive of the central ideas and questions to be 
studied; results can often be lifted from the partic- 
ular case to the general case reliably. For instance, 
polynomials of one real variable is a start-up example 
for the concept of a ring. 

l Reference examples are repeatedly used throughout a 
theory and serve to link together many results and 
concepts. For instance, for the geometry of planar 
triangles, the set of examples [3-4-5, 30-60-90, 45-45- 
90, isosceles and equilateral triangles] might serve as 
refcrcncc examples. 

l Model examples are ‘Lcanonical” in the sense that they 
may represent the “general case.” In their use, they 
are almost always adapted and customized to meet 
the specifics. In plane geometry of triangles, a canon- 
ical triangle is often depicted with arbitrary sizes, but 
with all angles less than a right angle. Gelernter’s the- 
orem prover used such examples to advantage, often 
claiming simple subgoals in the proofs as being true 
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“by diagram.” In dealing with conic sections, model 
examples are drawn with their principal axis aligned 
with the X and Y axes and the figure centered at the 
origin. 

Counter-examples are often used to delimit the gener- 
ality of statements. A common use of counter-examples 
is in showing that the converse of an implication does 
not hold: for instance, symmetric matrices are diago- 
nalizable. The 2 x 2 matrix [ (01) (01)] is diagonalizable 
but is not symmetric. Thus diagonalizable matrices 
are not necessarily symmetric. 

Producing Variations 

A brief excursion into the area of law can be used to illus- 
trate (a) that many concepts are defined primarily through 
examples; and (b) there are natural ways to produce vari- 
ations from a given situation. Consider how a corporation 
is considered not being subject, to tax (CCH, 1982). 

Principally there are included non-profit corpora- 
tions, such as a charitable, religious, or educa- 
tional institution; a civic league or social club; 
amateur athletic organizations that do not provide 
facilities or equipment; organizations forming part 
of a group legal services plans; polit,ical organiza- 
tions; some cooperatives operating on a patron- 
age basis; an employees’ pension or profit-sharing 
trust; trusts created to satisfy claims for disability 
or death due to pneumoconiosis under the Black 
Lung Act; and a trust set up under a plan which 
provides supplementary unemployment benefits to 
employees and, as a subordinate part of the plan, 
may also provide sickness and accidental benefits 

This quotation seems to illustrate that the concept of 
an organization exempt from taxation is specified by enu- 
meratang a list of possibilrties. Different possibilities seem 
to be specified to different degree of detail. No single nec- 
essary or sufficient condition is obvious. If a corporation 
does not seem to be in exactly one of these, one judges 
whether it is tax-exempt by looking for similarity to one 
or more of these cases. 

Now let us turn our attention to an illustration of how 
natural variations can be produced. Take as a specific ex- 
ample the woodstock corporation, a domestic corporation, 
which has an individual shareholder who owns 100% of the 
stock of this corporation. He received distributions dur- 
ing the year totalling $20,000 in cash. Variations on this 
example come easily if we identify several dimensions of 
variation: 

1. Shareholder: 
l The only shareholder is an individual (given) 
. The only shareholder is a corporation 
l The only shareholder is a related corporation. 



. There are several shareholders; this shareholder 
owns majority shares 

. There are several shareholders; no one holds ma- 
jority shares 

2. Corporation: 
. Corporat,ion is a going concern and is domestic 

(given) 
. Corporation is a holding corporation 

. Corporation is not a domestic corporation 

3. Distribution: 
All of the distribution was in cash (given). 

All of the distribution was in common shares 

Distribution was mostly shares, plus cash. 

Distribution was in bonds, shares and cash. 

Distribution is in shares of a related corporation. 

Distribution is in shares of an unrelated corpora- 
tion. 

4. Status: 
. Market value of shares has increased or decreased. 

. Distribution cxcccds the amount of earnings and 
profits, so part of the distribution was return of 
capital and not dividend 

l All of the distribution was return of capital. 

5. Other Dimensions: 
Time over which the shareholder has held shares 

First ever distribution by corporation 

Shareholder has redeemed all or part of his origi- 
nal shares. 

Shareholder has redeemed all or part of his distri- 
bution. 

Distribution was part of a corporate reorganiza- 
tion. 

Transformations that can produce such variations are 
essential when representing concepts by means of proto- 
typical examples. Associated with categories of classi- 
fication are annotations that determine whether a given 
variation progressively degrades the similarity to the pro- 
totype, whether it preserves equivalence, or whether the 
resulting situation crosses the “fence” thcrcby becoming 
an example of a polar-opposite category. For instance, 
in deciding whether receipt of distribution by this share- 
holder is “taxable,” increase in market value is irrelevant 
to the classification, and thus preserves equivalence. If the 
distribution were a mixture of shares and cash, it would 
be less representative, degrading the prototype. If the dis- 
tribution were entirely in shares of the corporation, the 
situation crosses the fence, and the distribution becomes 
nontaxable. 

The organization of the example space is an important 
research problem. It requires the articulation of attributes 

of examples (such as those cited previously), a repertoire 
of transformations and algorithms for using the example 
space in reasoning. 

The extension of the concept space to support example- 
based reasoning is also a basic research problem for AI. 
It is my hope that research results along these lines will 
enable us to produce, in the future, knowledge based sys- 
tems that would prove viable even in the presence of strong 
evolutionary forces. Sound human reasoning and good in- 
stitutionalized decision making are characterized by their 
ability to anticipate and respond to change We need to 
explore this dimension for knowledge-based systems. 

Summary 

Our starting point for this article was to discuss knowledge 
based systems in which rules occupied a central position 
(Section 1). We examined in section 2 several forms of 
rules and commented on the USC for diverse modalities of 
rule statements. We also discussed attributes of rules, such 
as purpose, precision/vagueness, specificity/generality, 
bendable rules and so on. We concluded Section 2 high- 
lighting the organization of a space of rules. Section 3 
considered a variety of rule-handling operations, some of 
which need to be elaborated further, if we wish knowledge- 
based systems to assume greater responsibility for docu- 
menting, justifying and modifying itself. 

Section 4 concentrated on the evolving nature of knowl- 
edge. Economic, social and technological forces of change 
were identified, some long-range and some short-range. An 
example (natural language report generation) was used to 
motivate why systems must bc designed to evolve with 
forces of change, at least for the short-range forces of 
change. One proposal was made on how to build a knowl- 
edge base that is amenable to change, namely, to incorpo- 
rate example-based reasoning and to structure the concept 
space to tap into a well-organized example space. 

To support example-based reasoning, not only are con- 
cepts specified in terms of the more conventional logical 
definitions for well-defined concepts, but also in terms of 
the prototypes and deformations model for amorphous or 
open-textured concepts. The utility of a well-stocked store 
of examples and the ability to generate new examples was 
emphasized in section 5. This space of examples has not 
received much research attention in artificial intelligence. 
The organization and management of a space of examples 
is crucial to the construction and modification of rules and 
more work needs to be done on this. 
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