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The machine learning (ML) research community has 
given a great deal of attention to developing efficient 
algorithms that produce accurate predictions, esti-

mations, and classifications — fundamental behaviors for 
artificial intelligence (AI; Etzion 2015). Although accurate 
outputs are the ultimate goal of ML algorithms, anything less 
than 100-percent accuracy is insufficient for more-sensitive or 
complex decision-making applications. Moreover, in com-
plex applications, the problems are seldom closed domain, 
and are subject to contextual influences. One might argue 
that contextual dynamics or complexity are at the root of all 
ML and subsequently AI errors. In complex decision-making 
situations that can be impacted by context, quantification 
of underlying uncertainties in a system’s output is necessary 
to establish trust, determine risk in alternatives, or commu-
nicate the potential for error. There are various sources of 
uncertainty in ML processes, including inherent noise in 
data, ambiguity or variance in model parameters, appropri-
ateness of model selection, and vagueness due to extrapo-
lation. We will illustrate the concept of uncertainty in ML 
by using the following example of extrapolation shown in 
figure 1. Figure 1 shows training observations (blue points), 
a regression model based on the training observations (blue 
line), standard error (faded-blue area around the blue line), 
and data observed after the model was created (red points).

 Machine learning and artificial in-
telligence will be deeply embedded in 
the intelligent systems humans use to 
automate tasking, optimize planning, 
and support decision-making. How-
ever, many of these methods can be 
challenged by dynamic computational 
contexts, resulting in uncertainty in 
prediction errors and overall system 
outputs. Therefore, it will be increas-
ingly important for uncertainties in 
underlying learning-related computer 
models to be quantified and commu-
nicated. The goal of this article is to 
provide an accessible overview of com-
putational context and its relationship 
to uncertainty quantification for ma-
chine learning, as well as to provide 
general suggestions on how to imple-
ment uncertainty quantification when 
doing statistical learning. Specifically, 
we will discuss the challenge of quan-
tifying uncertainty in predictions using 
popular machine learning models. We 
present several sources of uncertainty 
and their implications on statisti-
cal models and subsequent machine 
learning predictions.
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To illustrate, in the context of figure 1’s simple re-
gression model, uncertainty occurs when we make 
predictions on new (red) data that is outside the range 
of the training data. This simple ML linear regression 
model was fit to the training (blue) data points. Given 
the regression model, the system could support a gen-
eralization that as x gets larger, y also gets larger.

Because the regression model was trained on the 
blue data, it fits those points reasonably well and 
predictions would be fairly accurate. The standard 
error provides some insight as to how well the model 
fits the data, clearly showing that the best fit is in 
the area of blue points that have the greatest quan-
tity with the least amount of variance. If the system 
were to observe a new point that fits in the area of 
the blue points, the prediction would be fairly reli-
able. Moreover, the standard error in this situation 
can provide some degree of uncertainty associated 
with the predicted output. Further, if a prediction 
and subsequent observation was made anywhere 
along the right side of and close to the blue line (for 
example, where x = 5), a fairly accurate prediction 
could be made and reliably characterized with the 
standard error. This is true with the assumption that 
all possible observations would follow a linear pat-
tern similar to the distribution of the blue points.

Now, what if the range of possible observations 
do not follow the expected pattern of the model? In 
figure 1, this case is illustrated with the red points. 
When considering the red points, uncertainty related 
to a model prediction becomes difficult to quantify 
because the observations make both the model pre-
diction and the standard error grossly inaccurate. 
In this case, no insight could be provided about the 
quality of the machine-learned output. More specif-
ically, the quality of the machine-learned output is 
completely unknown until such a (contextual) time 
as an observation is obtained that indicates there is a 
potential issue, which usually occurs at runtime and 
can cause catastrophic system problems. This type 
of problem is frequently the case with contemporary 
ML algorithms and subsequent AI, leading to the rise 
of adversarial exploitation or disastrous errors or in  
the best case, greater ambiguity in risk and decision- 
making (Russell and Moskowitz 2016).

This simple example shows the problems associ-
ated with machine learners not intrinsically handling 
the sources of contextual and other uncertainty in a 
way that closely aligns with the learners’ implemen-
tation data architecture. In more complex systems or 
systems-of-systems, issues of contextual uncertainty 
can pose greater system liabilities because the ML 
models are typically part of an ensemble ML model 
or composite AI (Hyden, Ioup, and Russell 2011). As 
such, contemporary AI systems and intelligent deci-
sion support systems are vulnerable to many unfore-
seen risks in providing even local decision guidance, 
due to limitations in training contexts. This vulner-
ability is particularly true of modern optimization 
methods and intelligent systems that augment  
human decision-making.

Computational  
Context and Uncertainty

To better understand uncertainty’s relationship to AI 
and ML, it is important to have a basic understanding 
of computational context. Context has many defini-
tions ranging from environment to situation. Clark 
and Carlson (1981) suggest that the term context is 
useful because it is sufficiently vague, general, and 
can accommodate many different ideas. From a com-
putational perspective, most definitions of context 
narrow the environment or situational definition to 
characteristics of an entity’s existential or operational 
domain (Schilit, Adams, and Want 1994). Dey (2001) 
defines context as any information that can be used 
to characterize the situation of an entity, where an  
entity is a person, place, or object under consideration. 
This definition places appropriate computational  
emphasis on information, making this definition 
much more relevant for a computational context. 
The notion of information that characterizes the 
environment or situation is highly relevant to any 
computational model, let alone a machine learner or 
ensemble of them that form AI. Computational con-
text is one reason there is such emphasis on feature 
selection in the ML research community. It is note-
worthy that the literature for converging context and 
ML methods in any general sense is surprisingly quite 
sparse. In Google Scholar searches, at the time of this 
writing, most of the co-occurrences of context and 

Figure 1. An Illustration of the Concept of Uncertainty in ML.

Initial observations as blue points, model as linear regression, and second 
set of observation in red points after creating the model based on initial 
dataset (blue points). The uncertainty estimates in faded blue are very in-
accurate due to extrapolation error.
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ML and AI appear only as bounds on the ML or AI 
approach or discussion (for example, XXX AI or YYY 
learning within the context of ABC application area).

The definitional ambiguity referenced by Clark 
and Carlson (1981) is precisely why context can be 
associated with complex information, and therefore 
increase uncertainty in ML outputs. It is in the area 
of complex information that context becomes a 
dominant factor in understanding how the informa-
tion fits within the current situation, the informa-
tion relationships, the development of the situation 
in the future, and any related predictions about in-
terdependent effects (Russell, Moskowitz, and Raglin 
2017). Ambiguity in computational context can lead 
to significant errors and when those errors become 
unexpected or excessive, significant uncertainty. In 
terms of computational context, uncertainty can 
take two forms: stochastic uncertainty, which occurs 
because ML can behave in many different ways due 
to variable input data; and subjective uncertainty, 
which arises from a lack of knowledge about features, 
parameters, or conditions given ML’s computational 
implementation.

Consider the following constraints in designing and 
implementing a ML algorithm for a decision-making 
application. It is a safe, but not always accurate, as-
sumption that that a ML model builder had the requi-
site contextual expertise to validate the ML technique 
with its associated parameters. It is also possible, but 
unlikely, that the ML algorithm could have been 
trained on all the possible data. Further, the system 
in which the ML was implemented may, but at run-
time also may not, be sufficiently stable and iner-
rant (Etzion 2015). If the optimistic view of these 
constraints is met, then uncertainty in the output 
would be consistently deterministic. However, the 
likelihood of all these constraints being met is low,  
particularly for nonclosed domain problems. More-
over, the dependence on appropriateness and spec-
ificity in training data makes many ML models brit-
tle or limited to overspecified and closed domains, 
in other words, narrow-context problems that are 

characteristic of locally isolated or small systems. In 
more complex applications, these constraints for de-
terministic uncertainty are lofty objectives to meet 
and are arguably unrealistic in any generalizable sys-
tem context. Yet, progress in addressing these issues 
in a manner applicable to ML has been made in the 
research domain of optimization.

Optimization under Uncertainty
Contemporary intelligent decision support and AI 
automation comprises a diverse and vast array of com-
putationally capable sensors, actuators, networks, and 
information sources, which can provide context. These 
components are often combined with ML models 
that have varying degrees of intelligence, capability,  
and bailiwick. Beyond algorithmic accuracy, the 
efficacy of the output of these complex system-of- 
systems are constrained by energy, power, computing, 
and communication resources (Zhang, Liu, Samani, 
and Jalaian 2015). The layering diagram shown in 
figure 2 presents an architecture that describes the 
constraints in notional system functionality as layers.  
This diagram abstracts the underlying complexity  
shown in prior research (Nagaraj and Pasupathy 
2017) that studied cross-layer optimization and 
extended those notions to a system-level model rep-
resenting the architecture that exists in intelligent 
decision support systems (Liu et al. 2015; Kaiwartya 
et al. 2016; Beans 2018). Given a layered architecture 
such as shown in figure 2, which incorporates com-
putational context in stochastic variables, tractable 
mathematical models can be developed that opti-
mize the performance of assets and services with 
respect to decision objectives (Jalaeian, Zhu, Samani, 
and Motani 2016; Jalaian et al. 2017).

To develop these mathematical models, it is neces-
sary to (1) identify important parameters and decision 
variables that characterize the interconnections and 
interdependencies between layers; (2) develop the  
mathematical constraints that capture the cross- 
layered interactions and trade-offs between these key 
variables, that is, express underlying complex system 
rules, behaviors, and the uncertainty that exists in 
the system models; and (3) cast the specific service 
output as equivalent mathematical objectives (Zhu 
and Azar 2015). We extend this work by including 
quantified uncertainty in the expression of the un-
derlying system phenomena, such that they can be 
propagated to downstream models and global con-
siderations. In this manner, the uncertainty propa-
gating in the system can be modeled as a set of de-
terministic and stochastic mathematical constraints, 
which express how the value and uncertainty of one 
parameter or variable impacts other layers’ parame-
ters and the overall objective of the system.

Decision choices (system or human) can be con-
sidered as utility functions because they must focus 
on an objective outcome (Kreps 2018). Depending 
on the utility function, this may mean the objective 
activity is to maximize or minimize utility. If local 

Figure 2. Cross-Layered Autonomous Decision Support Architecture.
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system decisions are considered as a utility function, 
a function f (x, y, ω) can be defined. In this manner, 
uncertainty can be incorporated and evaluated. The 
performance of function f can be evaluated through  
stochastic simulation for a particular instance of the con-
tinuous inputs x, discrete inputs y, and a realization 
of the random variables in the simulation, the vector 
ω, which may or may not be a function of x and y.  
If discrete-event simulation is used to evaluate f, 
depending on the global decision objectives, the 
simulation may be partially accessible in algebraic 
form or may be purely available as an input–output 
modality (that is, a black box); it may have single 
or multiple outputs; it may have deterministic or 
stochastic output(s); it may involve discrete or con-
tinuous parameters; and it may or may not involve 
explicit or implicit or hidden constraints.

If the utility function is formulated in this manner, it 
becomes possible to model local system characteristics 
in an abstract closed form that can be exercised and 
evaluated before implementation. Further, this treat-
ment can be cast as a decision-making under uncer-
tainty optimization problem, where the expected value 
of the utility function can be minimized or maxi-
mized, subject to constraints; for example, those oc-
curring from layer interdependencies and interactions. 
In this context, the expected value of a vector-valued 
function g can be considered: ω [g(x, y, ω)] ≤ 0.

The constraints defined by g can also be evaluated 
with each simulation run over g. In this formulation, 
expected values for these stochastic functions are used. 
Similarly, there may be other constraints, as well as 
bound constraints on the decision variables, which 
do not involve random variables that would be repre-
sented by a function h(x, y) ≤ 0. Each constraint may 
be thought of as a representation of additional outputs 
from the simulation that needs to be taken into consid-
eration. Additionally, in this manner bound constraints 
may be imposed on the decision variables available or 
obtained from domain-specific knowledge. Discrete 
variables may either be binary, integer-ordered, or cat-
egorical, and lie in a discrete space. This formulation 
assumes that f is a real-valued function and g is a real 
vector-valued function, both of whose expected values 
may or may not be smooth or continuous functions. In 
context, this formulation could optimize the expected 
value of any ML or AI metric that was relevant to 
the model as its utility function. For instance, an 
objective function that minimizes the risk of exces-
sive resource consumption might be an alternative 
function — in which case, it would be important to 
incorporate a variance measure in the objective func-
tion. Like most optimization problems, the inclusion 
of additional constraints and variables increases the 
running time of the solver necessary to provide a sys-
tem implementation for quantitative uncertainty in 
its ML model(s) (Hutter, Xu, Hoos, and Leyton-Brown 
2014). Moreover, runtime is worsened, often nonlin-
early, if the system requires an ensemble solution or 
is part of an interdependent system-of-systems. This 
situation suggests it is important to consider solver 

runtimes that can provide uncertainty quantification 
(UQ) for complex ML and AI systems.

Given the potential complexity of this formula-
tion, stochastic simulation optimization runtimes 
required to quantify the uncertainty in an intelli-
gent decision support system’s learning models may 
be excessive. However, the high number of runs are 
necessary to capture the broadest range of compu-
tational context, to quantify uncertainty. Although 
there may be many approaches to reduce runtimes 
for optimization formulations (Akimoto, Astete- 
Morales, and Teytaud 2015), such as the one described 
here, even verifying the feasibility of a potential 
solution remains a challenge. Nagaraj and Pasupathy  
(2017) recently proposed a random restart algo-
rithm that repeatedly executes a gradient-based 
simulation optimization routine on strategically re-
laxed sample-path problems to return a sequence of 
local solution estimators at increasing precision. This 
proposed method is called cgr-SPLINE, which imple-
ments stochastically constrained simulation opti-
mization on mixed-integer spaces; this algorithm 
would be a candidate solution for implementing the 
above formulation of optimizing resource allocation 
and scheduling with uncertainty incorporated. The 
cgr-SPLINE method addresses the relatively unex-
plored problem of simulation optimization in the 
presence of stochastic constraints, making it an ideal 
candidate solution solver for the uncertainty formu-
lation herein. However, even given that uncertainty 
can be quantified and can be ascertained a priori, the 
issue of stochasticity in statistical learning remains  
a challenge. Specifically, stochastic optimization ap-
proaches are often the correct choice for optimizing 
the training objective where global optimization of 
a system’s deterministic objective involves the uncer-
tainty in training data (Srebro and Tewari 2010).

Statistical Learning  
and Stochastic Optimization

The previous discussion illustrates an optimization 
method to handle variability in computational con-
text manifesting as uncertainty in real environments 
that involve empirical data. Such an approach han-
dles uncertainty by using methods of probability and 
decision theory, but would be limited by incomplete 
data on which to statistically learn. In a pragmatic 
sense, statistical learning is the ability for a system 
to extract statistical regularities from observations 
and then use these statistics to generalize solutions 
to new problems or unforeseen observations. From 
an application perspective, statistical learning refers 
to a set of tools for modeling and understanding 
complex datasets. It is a recently developed area in 
statistics and blends with parallel developments in  
computer science and, in particular, ML (James, Witten,  
Hastie, and Tibshirani 2013).

In statistical learning, data are given in the form 
of independent and identically distributed samples 
xn of a random variable x ∈ Y. Based upon xn, we 
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would like to estimate a target yn, which is an inde-
pendent and identically distributed sample random 
variable y ∈ Y. Here, X is typically called the feature 
space, and Y is called the target domain. In terms 
of explicit ML approaches, for example, the target 
domain may be a discrete set {1, …, C} of yn in the case 
of classification (for example, is the set of observations 
A independent or interdependent from observations 
B) or Y ⊂  in the case of regression (for example, see 
figure 1). Ideally, the selected estimator would be one 
with a minimal number of mistakes in expectation 
over all data, also known as the statistical error rate.

There are two fundamental issues in minimizing 
the statistical error that make solving the minimi-
zation intractable. One, it is at least as hard as the 
hardest of problems for a nondeterministic polyno-
mial to optimize over an integer-valued stochastic 
function. Two, the feasible set, when given a generic 
function space without any structure, is mathemat-
ically impossible to fully optimize over (Murty and 
Kabadi 1987). Researchers have addressed both of 
these issues in a variety of ways; the work focused 
on the latter issue has led to the rich field of super-
vised ML. There is also work on a unifying method to 
address both of these fundamental issues. This work 
applies a convex loss function to the estimator in the 
statistical error rate. Using YX to denote the space of 
all functions from feature space X to target domain 
Y, consider a convex loss function :∈ YX × Y → , 
which becomes small when the estimator, typically 
denoted as yˆ(x) in the literature, is close to y, and 
large when far apart. Doing this yields the general 
learning setting of Vapnik (1995), key to drawing 
better inferences statistically.

The challenge of the general learning setting is 
that stability is often necessary for learning. Stability 
has also been suggested as an explicit alternate con-
dition for learnability. Intuitively, stability notions 
focus on particular algorithms, or learning rules, 
and measure their sensitivity to perturbations in the 
training set (Shalev-Shwartz, Shamir, Srebro, and 
Sridharan 2010). This sensitivity is particularly true 
in the absence of computational constraints, where 
the minimizer of a sample average of observed data 
is commonly referred to as either the empirical risk 
minimizer or the M-estimator. The empirical risk 
minimizer is an often-used estimation strategy  
because of its desirable statistical convergence prop-
erties (Frostig, Ge, Kakade, and Sidford 2015). To this 
end, the standard approach to statistical learning 
theory is based on assumptions chosen arguably for 
convenience (for example, independent and identi-
cally distributed or stationary ergodic–ergodic sys-
tems or data have the same behavior averaged over  
time and space; for example, a resistor’s resistance- 
value, averaged over time and in different locations, 
is stable). The notion of independent and identically 
distributed samples, or highly-inferable probabil-
ities, emboldens a further assumption that achiev-
ing the objective is at least possible in that problem 
domain. Therefore, the literature in approaching the 

problem of (formalized) learning restricts the focus 
to those scenarios in which learning is possible. This 
assumption that learning is possible is clearly an 
intuitive assumption, but it is one that may not 
always be valid in a formalized implementation of a 
theory of learning.

UQ in ML
ML has seen widespread use across countless domains. 
From election predictions to movie and music rec-
ommendations, ML has become an indispensable 
tool for making inferences based on what has been 
observed. The basic ML problem is as follows: We 
have p observed predictor variables x1, x2, … xp, which 
we would like to use to predict the value of some 
response variable Y (for example, figure 1). However, 
ML is typically restricted to computational contexts 
where it is assumed that we have access to sufficient 
training data and where both the predictor values 
and response values are known for many examples 
(for example, for a problem with a known solution). 
It is the hope that our model can learn from those 
examples and generalize to unseen data.

For regression problems, Y is a continuous varia-
ble (for example, a stock price), and we would like 
to predict a future Y value based on current obser-
vations x1, x2, ..., xp. For classification, Y is categorical,  
and we are interested in predicting the correct class 
label. Two canonical examples of classification are 
(1) predicting whether an e-mail is spam or not 
based on its content, and (2) diagnosing a patient 
given factors such as age, weight, blood pressure, 
and so forth. For example, if a patient is older, over-
weight, and has high blood pressure, a well-trained 
model would likely output a higher probability of 
heart disease compared with a patient without those 
characteristics.

Much attention in ML is focused on studying how 
specific models work (for example, neural nets) so that 
prediction accuracy is improved. Accuracy is, without 
question, an important measure of the statistical vir-
tue of a ML approach. Yet, accuracy gives no bounds 
on the quality of the machine learner, in terms of 
its contextual generalizability. Although the litera-
ture on UQ for traditional statistical models is vast, 
UQ has yet to become standard in ML practice, likely 
for several reasons. In many applications, primarily 
closed-domain problems, it is simply the case that UQ 
is not a priority. Consider a ML algorithm that recom-
mends music based on a user’s listening history. The 
algorithm’s main focus will likely be finding good pre-
dictions (songs), rather than trying to quantify how 
much the user will like a particular song. In other situ-
ations, such as those that have contextual complexity, 
UQ can be a matter of life or death. If a model is used 
to predict whether a patient has a particular disease, 
the patient would be very interested in how confident 
the model is in its output; a simple yes or no would 
likely be insufficiently informative.
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Another reason UQ may not be widespread is that 
for many popular ML methods, UQ is difficult to im-
plement. For example, the reason there are not simple 
formulas for confidence intervals of neural network 
predictions (as there are for, say, linear regression) is 
because UQ for complex models requires addressing 
challenges of dynamics in computational context 
and may have multiple sources of uncertainty.

Four Sources of Uncertainty
In this section, we will examine four sources of 
uncertainty: noise, parameter uncertainty, uncer-
tainty in model specification, and uncertainty due 
to extrapolation.

Noise
In almost any modeling problem, there is some sort of 
inherent noise in the data generating process (Scott, 
Ingalls, and Kaern 2006). Even when trying to estimate 
a deterministic physical law, there might be devia-
tions due to measurement error or other contextual 
dynamics. Figure 3 illustrates a situation where the 
model choice is correct, the model has been trained 
well, but there is a lot of noise in the data. Given 
a value on the X-axis, the blue line indicates the 
model’s prediction for the response variable (on the 
Y-axis). Although using this model would yield better 
predictions than no model at all, the amount of noise 
present precludes making accurate predictions.

Querying any model for a prediction only yields 
a single value. For instance, if the model for figure 
1 was given an x-value of 7.5, it would predict a re-
sponse value of ∼7. Without any UQ, the practitioner 
has no sense of how confident the model is. Someone 
who does not have much experience with statistical 
models may even attribute a high model confidence 
in the prediction. For this situation, a quantification 
of the noise would likely be of much use to the prac-
titioner. Instead of simply giving the prediction y = 
7 when x = 7.5, it is helpful to supply the prediction 
and a margin of error such as 7 ± 4. The interpreta-
tion of the interval depends on the context and what 
kind of interval one constructs, but essentially the 
purpose is to give some measure of uncertainty in the 
prediction. Fortunately, several methodologies have 
been developed to quantify this kind of uncertainty 
for a wide range of models (Cai and Wang 2011). We 
will look at two particular examples later.

Parameter Uncertainty
Most ML procedures have parameters that determine 
their exact form (Murphy 2012). For example, with 
simple linear regression, the parameters are the slope 
and intercept of the regression line. For neural net-
works, the parameters are the weight matrices and 
bias terms. ML attempts to estimate the true parame-
ters of the model (for example, the true slope and in-
tercept). Of course, with a finite amount of data, we 
can never know the exact value of the parameters, 
and this leads to contextual ambiguities. There will 

always be some error — and thus, uncertainty — with 
respect to the parameters. Figure 4 illustrates this 
type of error. In figure 4, the dashed red line indi-
cates the true regression line, that is, the line with the 
true parameters (slope and intercept). We record 50  
observations, the green points, and fit the standard 
regression line to those observed data. The solid green 
line represents this fit. As can be seen, the green line 
is close to the true regression line, but deviates a bit. 
It is possible to show theoretically that the more data 
available, the more the closer the blue line would be 
to the red line, and less uncertainty would exist.

As with uncertainty due to noise, estimating 
parameter uncertainty has long been a focus for 
statisticians (Murphy 2012). They have developed 
numerous ways to quantify this kind of uncertainty 
for a wide variety of models. It is worth pointing 
out that there are two major schools of thought on 
how best to model parameter uncertainty. The two 
schools are Frequentism and Bayesianism. Roughly, 
Frequentists assume that model parameters are fixed 
constants, and that one should only use information 
from the random sample to draw inferences about 
the parameters. Bayesians, on the other hand, model 
the uncertainty about the parameters with probabil-
ity. They might claim there is a 0.95 probability that 
the true slope is between 0.5 and 1.3, whereas a Fre-
quentist would not make any probability statements 
about a parameter (because their model parameters 
are fixed). Perhaps the main criticism of the Bayesian 
school is that Bayesians incorporate prior knowledge 
into their models, which some think is too subjec-
tive for rigorous research. Nevertheless, it is hard to 
dispute the fact that the Bayesian paradigm provides 
an elegant way of modeling parameter uncertainty 
in a wide variety of settings. We will explore a spe-
cific example that concretely distinguishes these two 
schools of thought in the next subsection.

Uncertainty in Model Specification
Although the two previous sources of uncertainty 
have a history of substantive quantitative method-
ology, the third source of uncertainty is not easily 
quantified. In practice, to establish context, tools 
such as visual aids, diagnostics, and domain knowl-
edge can be used to help determine the proper model, 
but it is impossible to know its true form. For exam-
ple, in figures 3 and 4, the models fit reasonably well, 
because the used model — simple linear regression — 
matches the true model of the data.

Figure 5 gives an example where the data has a 
quadratic relationship, but a linear model was fitted. 
The error bands given by the regression model are 
clearly unreliable. For instance, a Bayesian credible 
interval might give the conclusion that there is a 
0.95 probability that the future value will fall be-
tween –220 and –240 given future observed input x =  
220 even though, in actuality, the probability is 
nearly zero. This mistake is because the linear regres-
sion model assumes the data are linear. If the data are 
not linear, then any type of UQ will have inaccurate 
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results. Certainly, a trained practitioner would have 
plotted the data and seen that the relationship is 
clearly not linear, in which case they would have 
tried a quadratic model and observed a much better 
fit. Using models as contextual black boxes can lead 
to highly inaccurate results if one does not do some 
exploratory analysis or model assessment, and this is 
becoming an increasing practice in ML applications 
(Papernot et al. 2017).

Unfortunately, there is no widely accepted way of 
measuring how wrong a model choice may be, given 
an arbitrary decision or learning problem (Livingston 
et al. 2015) — indeed, such a quantification seems 

pragmatically impossible. However, there exists 
more flexible models than those such as illustrated 
in figure 5. The models can be shown to be robust 
for a wide variety of computational contexts. Non-
parametric models make few assumptions about the 
data, and can be very flexible. Of course, this flexibil-
ity comes at a cost. For large, high-dimensional, or 
sparse datasets (a common problem in ML), the per-
formance of nonparametric methods becomes very 
variable. Slight changes in the data can yield wide 
fluctuations in a model’s prediction accuracy. In 
contrast, simpler models, such as linear regression, 
can still perform well in these scenarios, as they are 
much more robust to slight changes in data. The de-
cision of what type of model to use is an art as much  
as it is a science, and is largely domain-specific 
(Livingston et al. 2015). Some fields, such as Econom-
ics, may rely heavily on linear regression, whereas 
other contexts with greater variability, such as image 
recognition, may use neural networks or support 
vector machines. In any event, one cannot assume 
that a fitted model will automatically work well in all 
computational contexts.

Uncertainty Due to Extrapolation
The final source of uncertainty that we highlight is 
uncertainty due to extrapolation. This uncertainty 
occurs when predictions are made on new data out-
side the range of the training data. Figure 6 illustrates 
this scenario. In figure 6, a Gaussian process regression 
(GPR) model was fit to the training (red) data points. 
Because the regression model was trained on the red 
data, it fits those points reasonably well. If we were 
to observe a point within the red data, our prediction 
would be fairly reliable. However, if we were to try 
and extrapolate — to make a prediction for points 
outside of the observed data — the prediction would 
be inaccurate. The GPR model does not have enough 
data to be confident on its prediction. This fact can 
be seen at x larger than 8 as the faded-blue area is 
getting larger, which represents high uncertainty.

As with model uncertainty, there is no accepted 
way to measure uncertainty due to extrapolation 
without making more model assumptions (Steel 
2011). The common way to handle this type of un-
certainty in practice is to flag any new data values 
that are far away from the rest of the data and give 
them an outlier treatment. A naive way of accom-
plishing this would be to report any new values that 
fall outside (the convex hull) of the data on which 
the model was trained.

GPR model incorporates extrapolation error to 
reduce uncertainty. By incorporating extrapolation 
error, GPR can handle a greater degree of contextual 
variability. GPR is a nonparametric Bayesian method 
that is flexible and has useful properties (Quiñonero- 
Candela and Rasmussen 2005). In figure 6, we show a 
basic example where we have fit a GPR model to some  
observed data, such as sparse observations of sen-
sor data. These are represented by the six red dots. 
The blue line represents the model’s predictions of 

Figure 3. Uncertainty Due to Noise.
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y based on the values of x, whereas the faded-blue  
region gives upper and lower standard error bounds, 
which attempt to quantify uncertainty in the model’s  
predictions.

Examining figure 6, the model is clearly flexible 
in how closely it fits irregular observations. It fits a 
smooth curve through the observed data in an attempt 
to guess the underlying function. The model does 
not assume that the true function is linear, quadratic, 
or any other strict functional form; it only makes 
weaker assumptions on how smooth the function is. 
The model also indicates that for areas where little 
data has been observed, a higher uncertainty is pro-
vided, as evidenced by the wider faded-blue region 
such as occurs on the plot’s far left and right. In this 
manner, predictions are provided with a degree of 
uncertainty, and thereby, provide additional insight 
into differences between the model and variations in 
the computational context.

Conclusion
The importance of computational context has in-
creased in direct correlation with the complexity of 
the intelligence decision support systems and the ML 
and AI that underlie them. Accounting for the varia-
bilities in algorithmic problem domains, underlying 
training data, model applicability, and pragmatic im-
plementations, all have to be addressed before gen-
eralizable learners and AI can be realized. Contextual 
dynamics and complexity create errors in the sys-
tems that cannot adapt to the variability or do not 
provide insight into the system’s own uncertainty 
about its learning or reasoning mechanics. Although 
contemporary ML/AI systems may be some distance 
away from broadly generalizable context-awareness, 
a degree of UQ can be achieved today.

The topic of UQ is not new to the statistical learn-
ing community, but it is often overlooked in the 
rapidly developing literature of ML. The lack of re-
search attention on UQ for ML might be caused by a 
growing demand for heuristic ML methods that work 
well enough for narrow applications where errors in 
system predictions do not have significant conse-
quences. On the other hand, UQ in ML will be in-
creasingly essential, as ML/AI applications are being 
used in more-complex and critical problem domains 
and contexts.

In this article we provided an introduction to un-
certainty and discussed its relationship to compu-
tational context. We also provided an overview of 
UQ for ML, as well as providing general suggestions 
on how to implement UQ in statistical modeling 
methods. Specifically, the challenge of quantifying 
the uncertainty in predictions using statistical or ML 
models was presented. Although not a comprehen-
sive list, several sources of uncertainty and their im-
plications on statistical models and subsequent ML 
predictions were also presented. As an early contribu-
tion to an emergent and necessary field, this review 
of the literature and discourse shows that numerous 

applications could benefit from a better understand-
ing of UQ, especially those involving complex infor-
mation problems or where computational context is 
particularly dynamic.
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