Context

Context-Driven Proactive
Decision Support for Hybrid Teams

Manisha Mishra, Pujitha Mannaru, David Sidoti,
Adam Bienkowski, Lingyi Zhang, Krishna R. Pattipati

W A synergy between Al and the Inter- apidly changing patterns in today’s world impose
net of Things (IoT) will significantly real-time decision-making requirements in many
improve sense-making, situational complex organizations, ranging from maritime estab-
awareness, proactivity, and collabora- lishments to agile manufacturing systems and commercial

tion. However, the key challenge is to . . .. . .
identify the underlying context within enterprises. One of the key trends in maritime operations is

which humans interact with smart the pervasive use of smart machines (for example, unmanned
machines. Knowledge of the context aerial and underwater vehicles) for countersmuggling,
facilitates proactive allocation among search and rescue operations, and battle management, to
members of a human-smart machine name a few. The primary reasons for the use of unmanned

(agent) collective that balances auto-
nomy with human interaction, with-
out displacing humans from their
supervisory role of ensuring that the
system goals are achievable. In this
article, we address four research ques-
tions as a means of advancing toward
proactive autonomy: how to represent
the interdependencies among the key
elements of a hybrid team; how to
rapidly identify and characterize crit-
ical contextual elements that require
adaptation over time; how to allocate
system tasks among machines and
agents for superior performance; and
how to enhance the performance of
machine counterparts to provide intel-
ligent and proactive courses of action
while considering the cognitive states
of human operators. The answers to
these four questions help us to illustrate
the integration of AI and IoT applied
to the maritime domain, where we
define context as an evolving multi-
dimensional feature space for hetero-
geneous search, routing, and resource
allocation in uncertain environments
via proactive decision support systems.

vehicles include their operability from remote locations,
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ultralong endurance, and high-risk mission ac-
ceptance. Additionally, these smart machines can
be made smaller, agile, and more economical than
their manned counterparts. With rapid advances
in Al, smart machines and agents are becoming
more autonomous (that is, they can both respond
to human commands and operate independently)
and require only intermittent human intervention
to keep them aligned with human intentions. In
March 2018 (Wakabayashi 2018), a pedestrian was
hit and killed by a self-driving car (with an emer-
gency driver behind the wheel), indicating the
need for a human driver to intervene in a timely
manner to avoid mishaps. It was later found that
the emergency braking system in the car was dis-
abled and the driver was streaming a TV show
before the incident. This mishap could have been
avoided had the emergency brakes been enabled
and had the driver been paying attention. This
incident illustrates the need to make machines
more intelligent so that they can mimic the human
thought processes of understanding the environ-
ment and can provide appropriate alerts for inter-
facing with the human when attention is warranted
or required for not only unexpected but uncertain
situations as well.

In fast-paced decision-making environments,
it is well established that human performance
becomes suboptimal when the workload is too
high, as well as when it is too low. Channelized
attention has been implicated in numerous
operational mishaps. According to a 2012 US un-
manned aerial vehicle (UAV) report to Congress,
68% of UAV accidents are attributable to human
error. To prevent such mishaps, there is a need to
develop hybrid teams, comprising humans and
smart machines, agents, and devices, for proactive
decision making in complex and uncertain envi-
ronments. A human-smart machine collective has
the potential to exploit the strengths of rapid com-
putation, communication and control capabilities
of smart machines and agents, and the generali-
zation, learning, and adaptation proficiencies of
humans for improved sensemaking, situational
awareness, collaboration, and coordination when
compared with teams composed of only humans
or machines.

With the advent of the Internet of Things (IoT),
it is possible to have humans and smart machines
connected anytime, anywhere, with anything and
anyone, ideally using any path or network and any
service. IoT allows seamless interoperability and con-
nectivity among smart machines, facilitating rapid
responses to user requests and potentially ubiquitous
access to information.

One of the key technical challenges in integrat-
ing IoT, decision support systems (DSSs), and human
teams is identifying the context where a set of smart
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machines needs to be connected so that the right
information from the right source and right con-
text are conveyed to the right user at the right time
for the right purpose (Smirnov 2006). Figure 1
depicts the data-to-decisions process, including
the human-machine interaction. IoT plays a cru-
cial role in real-time decision making as it facil-
itates communication among the stages of the
process: (1) data sensing, (2) data analytics to de-
termine the current context, (3) diagnosis of root
causes of contextual changes and prediction of the
future evolution of context for relevant courses of
action, (4) dissemination of contextual informa-
tion to the correct user, and (5) decision making
and action validation. Figure 1 also depicts how
Al in smart machines evolves from assisted intel-
ligence to augmented intelligence to autonomous
intelligence. Assisted intelligence is provided for
repetitive and routine tasks, where the nature of
tasks does not change. In the case of augmented
intelligence, tasks are dynamic, and humans and
machines learn from each other. Finally, when the
machines are capable of understanding the situa-
tion and taking relevant actions, they require min-
imal human intervention to achieve the human'’s
intent. Here, we focus on augmented and autono-
mous intelligence in the domain of maritime de-
cision making. In this article, smart machines are
DSSs that interact with human decision makers to
develop proactive courses of action and facilitate
what-if contextual analysis for robust and adaptive
decision making.

Literature Review

The idea of machines performing tasks that typ-
ically require humanlike understanding has been
around for more than 60 years. With cloud com-
puting and the deluge of data, machine learning
techniques, especially deep-learning methods,
have evolved rapidly since 2012 to demonstrate
human-level capability; for instance, machines are
able to recognize objects in digital images, even
when the objects are represented in unusual con-
texts, such as varying backgrounds and levels of
light. Articulate AI, which combines deep learn-
ing, unsupervised and semisupervised learning
and causal reasoning, and the generalization that
is innate to humans (that is to say, domain knowl-
edge, how the constituent parts fit together, causal
relationships), is a critical need for mixed-initiative
proactive decision making. Creativity — articulating
and finding the problem, while seeing problems
that are not there through look-ahead reasoning,
anticipatory behavior, and asking what-if questions —
will always be the human frontier. The human
planner is indispensable, working in an interactive
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Figure 1. Proactive Decision Making.

Central to the Internet of Things, proactive decision making involves (1) sensing data from heterogeneous sources via sensors, (2) repre-
senting data and their interdependencies via Protégé (Mishra et al. 2017b) for determining context, (3) processing context via analytics and
machine learning, (4) context detection and prediction via root cause analysis, (5) context dissemination via communication protocols,

and (6) decision and validation via real-time applications.

way with Al, because unexpected machine system
states occur. Table 1 provides the relative strengths
and limitations of humans and machines, some-
times referred to as what humans are better at
and what machines are better at (HABA-MABA),
as defined by Fitts in the 1950s (Fitts et al. 1951).
Since then, a series of technical studies have been
conducted on automation and on the formation
of collaborative teams of humans and machines
(Chapanis 1965; Muir 1987; Rasmussen 1983).
Table 2 lists the levels of automation of decision
and action selection in a human-machine collec-
tive. Parasuraman. Sheridan, and Wickens (2000)
provided a four-stage model of human-automation
interaction, comprising information acquisition,
information analysis, decision selection, and
action implementation guidance on the type and

level of automation in a system. We believe that
today, human decision makers are an integral part
of decision making in human-machine systems,
and thus our applications deal mostly with levels 2
through 5.

Rasmussen (1983) categorized human behaviors
into (1) skill-based sensory-motor actions that are
highly automatic and acquired after some period of
training; (2) rule-based actions guided by subrou-
tines, stored rules, and if-then-else structures; and
(3) knowledge-based actions, where mental models
built over time aid in the formulation and selec-
tion of plans for an explicit goal. Cummings (2014)
added a fourth behavior, that of expertise, the high-
est level of cognitive control achieved from signifi-
cant experience in a particular field in the presence
of uncertainty. Table 3 describes the varying degrees
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Attribute

Speed

Power

Consistency
Information capacity

Memory

Reasoning computation

Sensing

Perceiving

Machine
Superior
Output superior in level and consistency
Ideal for consistent, repetitive action
Multichannel

Ideal for literal reproduction, restricted,
and formal access

Deductive, tedious to program, fast and
accurate, and poor error correction

Good at quantitative assessment, poor at
pattern recognition, poor judgment ability

Copes with variation poorly, susceptible

Human
Comparatively slow
Comparatively weak
Unreliable learning and fatigue are factors
Primarily single channel

Better for principles and strategies, versatile
and innovative access

Inductive, easier to program, slow, accurate,
and good error correction

Wide ranges, multifunction, good judgment
capability

Copes with variation better, susceptible to

to noise

noise

Table 1. Comparisons of Humans and Machines.

High

9. Informs the human only if it, the machine,
decides to

8. Informs the human only if asked

7. Executes automatically, then necessarily
informs the human

6. Allows the human a restricted time to veto
before automatic execution

5. Executes a suggestion if the human approves
4. Suggests one alternative
3. Narrows the selection down to a few alternatives

2. Offers a complete set of decision/action
alternatives

1. Offers no assistance: the human must make all
decisions and actions.

Low

Table 2. Levels of Automation
of Decision and Action Selection.

of automation for tasks of various information pro-
cessing behaviors. Figure 2 provides a few examples
of tasks and the corresponding degree of automation
required (Cummings 2014).

We briefly review three concepts, namely, context,
decision support, and IoT, related to this article.

Context

The definition and representation of context enables
related information to be attached to data for later
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retrieval and decision making. The word context
has Latin roots: con means to join together or to
weave together, and texere means to weave or to
make, implying weaving together the circumstances
that form the setting of an event or scenario. In
computing, for example, context has been referred
to as the location and identities of nearby people
and objects, and changes to those objects; knowl-
edge about the user’s and the machine’s state,
including surroundings, situation, and location;
and emotional state of the user, focus of attention,
and information the user is attending to. Further,
context has been decomposed into various cate-
gories, such as computing context, user context,
physical context, time context, and cognitive
context. Although there is no unified definition
of context, one of the most celebrated works in
human-computer interaction, by Abowd et al.
(2001), formally defined context as

any information that can be used to characterize the

situation of an entity (for example, a person, place, or

object) considered relevant to the interaction between

a user and application, including the user and appli-
cations themselves.

Context awareness — the ability of a system to
provide relevant information or services to users
via the wutilization of contextual information,
where relevance depends on the user’s task — has
become a key factor for successful integration of
human-machine systems. Further, context aware-
ness has been categorized as active and passive:
active context awareness enables an application
to automatically adapt to a discovered context
by changing the application’s behavior, whereas
passive context awareness enables the applica-
tion to present the new or updated context to an



interested user or make the context persistent for
the user to retrieve later. We define context as a
multidimensional feature space, which dynami-
cally evolves with time.

DSSs

A DSS is an information processing system
embedded into an organizational decision-making
system to aid the decision maker in solving unpro-
grammed, unstructured, or semistructured prob-
lems (Bonczek, Holsapple, and Whinston 2014).
Decision making was defined by Fitts et al. (1951)
in an air traffic control design scenario as the
basic human action involved in the human-
machine system — the choice by a pilot or con-
troller of a particular course of action (COA) from
among the alternatives available at a particular
moment. Decision making was further explored
from a system’s perspective by Horvitz (1999); in
that work, the system makes decisions as a func-
tion of an inferred probability of performing spe-
cific operations. DSSs are categorized as model
driven, communications driven, data driven, doc-
ument driven, knowledge driven (event driven),
or context driven. Model-driven DSSs emphasize
access to and manipulation of a quantitative model,
making it the dominant component in the DSS
architecture. Communications-driven DSSs derive
their functionality from communications and
information technologies within the system to
support shared decision making. The functional-
ity of data-driven DSSs results from access to and
manipulation of a large database of structured data.
Document-driven DSSs integrate a variety of stor-
age and processing technologies to provide sophis-
ticated document retrieval and analysis to support
decision makers. Knowledge-driven DSSs suggest
or recommend actions based on knowledge that
has been stored using Al or statistical tools, such
as case-based reasoning, rules, frames, and Bayesian
networks. Finally, context-driven DSSs derive their
functionality from dynamically integrating knowl-
edge, that is, (1) relevant to the mission, environ-
ment, assets, threats, or tasks including the decision
maker’s activities; (2) informed by up-to-date data
sources; and (3) congruent with the work flow and
the individual decision maker’s role in mission,
workload, and expertise.

IoT

The IoT integrates the physical world with the
virtual world of the Internet. Objects such as car,
house, clothes, and refrigerator are electronically
tagged with important information and connected
to the Internet through remote, contactless tech-
nology. These things are equipped with sensors

Context

Expertise-based

organize, filter, and synthesize data

Cognitive Behavior/Task Degree of Automation

Skill-based Best candidate for automation,
assuming reliable sensors for state
and error feedback

Rule-based Possible candidate for automation, if
rule set is well established and tested

Knowledge-based Some automation can be used to help

Human reasoning is superior, aided
by automation as a teammate

Table 3. Degree of Automation as a Function of Desired Behavior.

that collect, optimize, and send real-time data to
a decision maker, other devices in the network, or
hybrid teams in the human-machine system. Con-
text awareness plays an integral role in deciding
on the information to be collected, services to be
executed automatically, and sensor data to be fused
within the network (Perera et al. 2014). For exam-
ple, a shipping company can offer context-aware
functionalities via the fusion of relevant data, such
as ship location, speed, and cargo temperature, to
optimize maintenance costs and route planning
(Tracy 2016).

Technical Challenges

In this section, we list challenges in proactive
decision making by hybrid teams, within the mar-
itime domain, focusing on augmented and auton-
omous intelligence. The technical challenges can
be categorized depending on the stage of data to
decision-making process. They include context rep-
resentation challenges, context determination and
data analytics challenges, context communication
challenges, and decision and validation challenges.

Context representation challenges include (1) how
to define, represent, identify, and characterize evolv-
ing contextual elements, including human-machine-
task interactions, and (2) how to summarize con-
textual attributes (for example, speed, capability,
sweep (search) width or detectability index of assets,
environmental parameters, cognitive state of hu-
mans) without making a problem computationally
expensive.

Context determination and data analytics chal-
lenges include (1) how to determine context and
contextual changes within an uncertain environment
and (2) how to predict the evolution of context
and develop flexible (for anticipated and evolving
events) as well as agile (for unanticipated events)
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Figure 2. Manual Tasks, Tasks Requiring Hybrid Teams, and Completely Automated Tasks.

COAs to achieve resilience in dynamic and uncertain
environments.

Context communication challenges include (1)
how to communicate context among hybrid team
members in a timely manner and (2) how to mini-
mize communication costs among different team
members.

Decision and validation challenges include how
to explore methods for instantiating alternative
COAs consistent with the needs of system goals
when context changes are detected and root causes
inferred and how frequently replanning should
occur (for example, as events emerge or at a pre-
defined frequency). A third challenge is how best
to formulate and allocate tasks among the available
assets and machines and when to allow human inter-
vention for superior system performance — in par-
ticular, how automation makes its behavior known
to human agents, and how easily and efficiently it is
directed. Part of this challenge is determining when
and at what level the automation should be enabled
(adaptive and adaptable automation differ accord-
ing to whether the machine or human, respec-
tively, possesses responsibility for controlling the
level of automation). Finally, how should a scalable
human-machine collective be integrated for a range
of missions? In particular, how can the human-to-
machine ratio be reduced to reduce the cost of man-
power and training, and how can human workload
be accurately estimated and balanced while main-
taining overall human-machine capabilities in
dynamic and uncertain mission environments?

46 Al MAGAZINE

Addressing these challenges is beyond our scope;
however, we focus on (1) representation of the key
elements of a hybrid team, (2) context determi-
nation and analysis, (3) dynamic task allocation
and methods to reduce human workload in time-
critical mission environments, and (4) decision
support tools (that is, machines) to represent,
identify, predict, and learn new context and pro-
vide appropriate COAs.

Modeling Hybrid Teams

The triad of human-machine-task interactions is best
represented using graphical models learned from
data. The models should include task variables (task
types, amount of work, task disturbances, depen-
dencies among tasks), team variables (capabilities/
expertise in terms of work rates, communication/
coordination, learning), and quality of interaction
(internal-external work, task time, task accuracy).
Data-enabled predictive models can provide insights
into high-performing human-machine collectives.
For example, if the mission is a notionalized point in
multidimensional task work space, with each human-
machine capability as a vector, the work vector and
the weighted combination of capability vectors, with
weights being effort probabilities over time, must be
congruent. The rationale for alignment stems from
queuing network theory and theory of constraints:
match service rates at agent nodes (human or
machines) to get maximum throughput.



The multidimensional operational context in the
maritime domain comprises an external context in
terms of mission, environment, assets, and threats
or tasks, and an internal context composed of the
cognitive states of human and decision maker (see
figure 3). Each MEAT-H (mission, environment,
assets, threats/tasks—-humans) element may have
several subelements with associated states where
level of specificity may vary with decision-maker
roles. Examples of missions are antisubmarine wazr-
fare, countersmuggling operations, and UAV coor-
dination in heterogeneous environments (Mishra
et al., forthcoming; Mishra et al. 2014; Sidoti et al.,
forthcoming). Each mission is characterized by goals,
desired performance, achievable performance, and
constraints.

Examples of environment elements are cloud cover,
sea state, precipitation, salinity, and temperature, each
with possible multiple states.

Examples of assets are sea, air, space, and land
assets, with subelements such as frigates, high- or
medium-endurance cutters, and P-3s, where sub-
element states may include an asset’s availabil-
ity (available, unavailable) or crew endurance (in
hours).

Finally, note that the T in the MEAT-H frame-
work may refer not only to the threats or tasks to
be done but also to the decision maker’s activities
to accomplish them (namely, the work flow). Some
examples of threats or tasks are the interdiction of
drug smugglers, protection of high-priority maritime
vessels, and reconnaissance, depending on the
operational mission context. In this article, a mis-
sion may consist of subgoals, referred to as threats
or tasks. A proactive DSS considers the decision
makers’ workloads, time pressures, and roles in
the determination and communication of relevant
information for effective mission performance.
Once context is represented, it must be analyzed
via approaches like event trees or decision trees as
discussed in supplementary material by Mishra et al.
(2018).

Adaptive model-based approaches to context-
based mission representation include graphical
models like dependency graphs (digraphs), Petri
nets, multifunctional flow graphs, action-goal
attainment graphs, hidden Markov models (HMMs),
coupled HMMs, factorial HMMs, and dynamic
hierarchical Bayesian networks (DHBNs). These
graphical models are consistent with planning as
probabilistic inference, advocated by cognitive
scientists and neuroscientists. In their view, a de-
cision-making agent has an internal generative
model of the future as a joint probability distri-
bution over actions, outcome states, and rewards
and costs. This probabilistic generative model
facilitates computationally efficient algorithms for
perception and action selection. For example, each

node in a DHBN model represents contextual ele-
ments (user intent, environment, asset, threat or
task, human cognitive context), and edges denote
the dependencies among pairs of contextual ele-
ments. DHBN-based contexts represent these char-
acteristics: (1) finite, but large number of states;
(2) multistage representations, with decisions
made at each stage’s beginning; (3) stochastic effects
generated from action execution; (4) function ex-
ecution in a particular state generates one of pos-
sible numerous states with associated probabilities
reflecting unforeseen external events (for example,
unanticipated threats, weather, terrain); (5) com-
plete or partial observation of true states of envi-
ronments at any stage; and (6) goal-directed decision
making.

Context Determination,
Root Cause Analysis, and Inference

Any decision originates in a dissatisfaction from
differences between the current state and a more
desirable state not yet existing (Pomerol 1997).
Causal models use differences between model pre-
dictions of context and operational data to detect
context changes, triggering (1) root cause analy-
sis (diagnosis) of context changes (that is, which
contextual elements caused change), (2) projec-
tion of the impact of changed context on mission
goals (what could happen with associated uncer-
tainty), and (3) replanning strategies to proac-
tively explore decision alternatives that exploit
potential opportunities or mitigate negative con-
sequences of changed contexts (what COAs need
to be taken).

Statistical hypothesis testing and machine learn-
ing techniques detecting context changes and
neurodynamic programming-based algorithms sug-
gest COAs commensurate with changed context.
Update of the DHBN model structure via planner-
in-the-loop active learning enables the discovery,
labeling, and incorporation of new context with
associated feature data. Quantification of value of
information, coupled with free energy-based in-
ference and decision making, enables exploration-
exploitation trade-offs inherent in sequential
decision making under uncertainty. Recently, a the-
ory has been proposed to suggest that agents, for
example, biologic systems, such as a cell or brain,
adapt to their environments by reducing the infor-
mation-theoretical quantity known as variational
free energy. This theory, called the free energy
principle (Friston 2010) or maximum entropy
reinforcement learning (Levine 2018), brings in-
formation-theoretic, Bayesian, neuroscientific, and
machine learning approaches into one framework
by formalizing that decision makers (more gen-
erally, agents) reduce free energy in three ways:

Context
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Figure 3. Representing Contextual Elements.

Contextual elements (MEAT-H) are represented in hybrid teams for maritime decision making via Protégé (Mishra et al. 2017b). Solid
arrows represent the hierarchy, whereas dashed arrows denote relationships between elements. In this figure, mission elements involve
antisubmarine warfare, mine warfare or intelligence, surveillance, and reconnaissance operations.

(1) by changing sensory input (information seek-
ing action selection), (2) by changing predictions
of sensor inputs (perceptions, beliefs), and (3) by
changing the model of the decision maker’s team
structure and coordination (learning). Variational
free energy is a function of sensory outcomes
(data) and probability density over their (hidden)
causes (true world states or context). This function
is an upper bound on surprise, a negative log of
model evidence representing the difference be-
tween agent predictions about sensory inputs, and
observations or data encountered. Indeed, differ-
ences between variational free energy and surprise
is Kullback-Leibler divergence between agent be-
liefs about context (called the recognition density)
and the joint density of context and data given the
agent model (the generative density). Because the
long-term average of surprise is entropy, an agent
acting to minimize free energy will implicitly place
an upper bound on the entropy of outcomes or
sensory states sampled. Consequently, the free en-
ergy principle provides a mathematical foundation
to explain how agents maintain order by restrict-
ing themselves to a limited number of perceived
high-probability and high-utility (context, action)
pairs. This restriction gives a formal mechanism
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to inference and decision making, where multiple
agents operate autonomously, coordinate among
themselves, and resist disorder (Levchuk et al. 2018).

Context inference compares model predictions
of outcomes with expected (desired) outcomes;
these deviations form the basis for nonnormalcy
detection, active learning, and subsequently pre-
dictions based on updated context model. Be-
cause context inference is a maximum a posteriori
estimation problem on a DHBN, we convert the
DHBN model into a factor graph of data variables,
context factors, and decision makers or agents.
Algorithms for dynamic context inference using
factor graphs of data variables and context factors
(assuming each factor is associated with an agent)
include generalized belief propagation algorithms,
decomposition algorithms, and clustering approaches.

Generalized belief propagation algorithms (Yedidia,
Freeman, and Weiss 2005) include a combination of
coordinate descent, Lagrangian relaxation and Viterbi
decoding algorithms developed for coupled HMMs
(Zhang et al. 2013), and semisupervised (active
learning-based) clustering algorithms. Because exact
computation of posterior context distribution is NP-
hard, an approximate solution is produced by the
max-product belief propagation algorithm, which



is the Bethe approximation of free energy function.
Max-product belief propagation computes max-
marginal distributions by iteratively passing belief
messages between variable (data) and factor nodes
in factor graphs.

Decomposition algorithms decompose the infer-
ence problem into decoupled subproblems, one for
each contextual element (pattern of mission, envi-
ronment, asset, threat, or task); the subproblems,
solved in parallel, are coordinated by updating
Lagrange multipliers and are iterated until conver-
gence. Each subproblem corresponds to finding
optimal context-state sequences, solved using the
Viterbi decoding algorithm (George et al. 2017). This
approach is suited for distributed, asynchronous
implementations.

Clustering each contextual element and assign-
ing new data to known contexts or classifying it
as unknown. These unknown contexts are labeled
by decision makers with an updated context model
used for predicting the impact of context changes on
mission performance via Q functions that approxi-
mate the cost-to-go for (context, action) pairs.

Human-Machine Task Allocation

Task allocation assigns mission tasks to humans
or machines in real time by monitoring agent ac-
tivities and identifying tasks best performed by
humans or machines based on triggering contexts.
Tasks assigned to machines or agents require multi-
objective optimization algorithms to meet desired
goals. Multiobjective optimization seeks a Pareto
front, representing all trade-offs among mission
planning objectives. A human decision maker can
explore and decide which available trade-off works
best via an adaptive scatter or gather or a baseline
web search interface for exploratory or lookup-
type query tasks, respectively. Multiobjective plan-
ning (for example, resource allocation, routing,
scheduling) can be viewed as a moving horizon sto-
chastic control problem. The key is to optimize or
equilibrate mission objectives, subject to realistic
constraints such as weather, asset capabilities (for
example, range, speed), and asset assignment (for
example, coordination among multiple sensors
for improving situational awareness). These prob-
lems are computationally intractable because of
multiple conflicting objectives and uncertain mis-
sion environments. Key concepts include problem
decomposition, approximate dynamic program-
ming, limited search, domain-specific constraints,
and scalable Pareto optimization approaches that
exploit efficient data structures and multiobjective
A* algorithms for dozens of objectives or more.
Additionally, uncertainty in maritime missions
can range from situations where probability distribu-
tions over outcomes is known, partially known (for

example, they belong to a family of distributions
over outcomes), and unknown, requiring online
learning. In such cases, scenario-based uncertainty
management approaches can be applied, including
robust, flexible, and agile methods.

Robust decision making seeks to manage uncer-
tainty via minimizing variability in the expected risk
or reward, minimizing maximum risk, or maximizing
minimum reward. Methods based on m-best solu-
tions coupled with robust design techniques, cone
programming, and efficient propagation of Pareto
solutions in search spaces are representative of these
methods.

Flexible decision-making methods adapt to
uncertain contexts via enumerating or brainstorm-
ing potential event sequences a priori, conduct-
ing what-if analyses, and preplanning response
policies. These methods adapt to expected sce-
narios by recognizing critical events signaling
context change. Typical methods in the context
of planning include FRAG plans (fragment-based
branches and sequels) and conformant plans (Kurien,
Nayak, and Smith 2002). Decision-directed open-
loop optimal feedback, Q-learning, and rollout strat-
egies belong to this category.

Agile decision-making methods adapt to uncer-
tain and unexpected contexts by learning (online)
an updated model of decision environments while
hedging against uncertainty by trading off explo-
ration versus exploitation (also known as dual
control or probing and caution in the stochastic
control literature [Powell 2007; Sutton and Barto
1998]). Typical methods in the context of plan-
ning include coupling active learning algorithms
with moving horizon planning, certainty equivalence,
open-loop optimal feedback, free energy optimiza-
tion, and other approximate dynamic programming
techniques.

Graphical models, coupled with concepts from
multiobjective optimization, provide an elegant
framework for adaptive distributed task allocation
in multiagent systems, like human-machine col-
lectives. A basic formulation of human-machine
task allocation is provided in supplementary mate-
rial (Mishra et al. 2018). This model characterizes
skills of humans and machines in terms of qual-
ity (task accuracy) and cost (measured in terms of
time, processing and coordination workloads, and
other economic factors) and recognizes the many
different ways that humans and machines may
cooperate.

Application
of Context-Driven
Decision Making in Hybrid Teams

Maritime operations often require integrated, inter-
connected platforms for rapid decision making and
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planning in uncertain and dynamic environments.
The US navy envisions a networked battlespace
linking target information from heterogeneous
sources, such as aircraft, ships, and underwater vehi-
cles, to keep pace with potential adversaries. A net-
worked battlespace facilitates the flow of relevant
information among heterogeneous sensors at geo-
graphically disparate locations via cloud-based IoT,
allowing heterogeneous assets (UAVs, ships, and
submarines) to access a range of targeting informa-
tion for carrying out operations like integrated air
and missile defense, countersmuggling operations,
and multiobjective ship routing. The exchange of
relevant context or information among sensors
and platforms allows for timely fusion by analysts
to develop proactive COAs using decision support
tools. To demonstrate the relevance of IoT and Al
in a networked battlespace environment, we dis-
cuss two areas of operations and the concomitant
decision support tools for providing augmented
and autonomous intelligent courses of action for
(1) multidomain battlespace management (MDBM)
and (2) supervisory control operations user testbed
(SCOUT). The latter application can be found in
supplementary material by Mannaru et al. (2017)
and Mishra et al. (2018).

MDBM requires situation awareness and ad-
vanced battlespace management to place assets
where and when needed and to make the (antic-
ipate) —» find —» fix — track — target — engage —
assess cycle faster and more resource efficient (see
figure 4). MDBM is a moving-horizon stochastic
planning and control loop, where surveillance
sensors seek to detect emerging threats or targets
(find). Target detection results in an alert (or con-
text change) that initiates a decision-making pro-
cess to determine whether to prosecute it or to
continue surveillance. This decision-making pro-
cess commences when positive identification of
the target is requested and accomplished by the
information processing block (fix). The movement
of the target is monitored and its track maintained
while its desired end effects are confirmed (track).
In the targeting phase, available assets are searched
for suitable weapon platforms to engage the target
based on desired end effects. A collateral damage
estimate is performed, and the mission package is
reviewed against rules of engagement and submit-
ted for approval. The targeting phase is often the
longest because of the large number of constraints
to be satisfied. The engage phase commences when
ordered by the commander. A brief is drafted and
transmitted to platforms that engage the target
after acknowledging receipt and comprehension
of contents. The loop ends with a battle damage
assessment report (assess) and the process repeats.
The MDBM problem assigns relevant resources to
mission tasks to achieve one or more goals, while
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satisfying a set of domain constraints, like geo-
graphic limitations, meteorological and oceanographic
(METOC) priorities, and sequences of mission tasking
to address threats.

The solution to the MDBM problem requires
networked architectures for easier information
flow and decision making. Figure 5 depicts the
overall MDBM architecture compatible with the
DEF-NTC, which includes Docker,! a modular, envi-
ronment-independent way of handling segmented
code based on mission context. The Docker soft-
ware enables transitions of software, algorithms,
or database communication networks between
systems (or collaborators), while guaranteeing
that software will run as expected. The algorith-
mic decision-making components include the
tool for multiobjective planning and asset routing
(TMPLAR), conflict identification (CONFIDENT),
the courses of action simulation tool (COAST),
and asset package selection and planning (APSP).
The mission planning elements are as follows:
(1) mission includes all MDBM services, for example,
TMPLAR, CONFIDENT, COAST, APSP; (2) envi-
ronment includes bathymetry data and METOC;
(3) assets include ship or submarine limits; (4) tasks
or threats are input via JavaScript object notation
or text files; and (5) human is the decision maker
who specifies mission objectives, that is, whether
the commander’s intent requires conflict identifi-
cation, traversal between operational areas, search
and prosecution of targets, maritime operations
center planning, or a combination.

TMPLAR

Navigation under uncertainty involves several
contextual elements, like different METOC condi-
tions (ensemble forecasts with varying spatiotem-
poral uncertainty), evolving multiple objectives
(for example, fuel, time, pop-up threats, naviga-
tion hazards, bathymetry, depth of fire, avoiding
red sensor ranges, extending ship’s life, training
requirements), and asset condition. A canonical nav-
igation under the uncertainty problem is as follows:
Given a graph (for example, grid map probability
surfaces), a departure point, and a destination point
(including way points), find the set of shortest paths
with Pareto efficient costs, where cost may be multi-
objective. This problem is the multiobjective shortest
path problem under uncertainty with time windows,
power plant configurations, speed, and bearing
as additional control variables, with time-varying
stochastic, nonconvex, and multiattribute costs at
nodes and along arcs in the network.

Motivated by practical and economic needs of naval
and commercial shipping, we developed TMPLAR to
help human planners create ship routes (Sidoti et al.
2016). TMPLAR’s goal is to suggest multiple routes
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combined with human situational awareness about
forecasts (air temperature, sea height, swell height,
period, direction, current speed or direction), geo-
graphic hazards (light houses, oil rigs, bathymetry,
pipelines, undersea cables), asset conditions (hull
or propeller fouling, ship dynamics), and threats
(torpedoes, sensor ranges) and other uncertainties
for a human-machine consensus on routes for one
or more ships. A key feature of TMPLAR is the abil-
ity to wait at a node, adding a degree of freedom to
avoid bad weather or accomplish training. TMPLAR
imposes time windows on nodes, that is, the earliest
anode can be reached and the latest the ship can de-
part from a node and still reach its destination given
time constraints. Instead of assuming a relative im-
portance of conflicting objectives, TMPLAR finds the
set of Pareto efficient solutions, allowing humans
to determine which solution is best given trade-offs
between objectives. This approach, combined with
strategies for finding solutions robust to uncertainty,
allows TMPLAR to quickly recommend high-quality
routes that humans can select to route a ship. Appli-
cation of TMPLAR to the El Faro incident (Alvarez,
Pérez-Pefia, and Robles 2015) illustrated that it poten-
tially could have prevented the loss off the coast of the
Bahamas, due to crossing paths with Category 4 Hurri-
cane Joaquin, of a cargo ship heading from Florida to San
Juan, Puerto Rico (Bienkowski et al. 2018; Sidoti 2016).

Conflict Identification

Water space planning focuses on route and region
deconfliction of submarines and maritime assets
to ensure their safe operation (figure 6). Previously,
submarine commanders spent hours assigning and
deconflicting submarine water space manually.
Deconfliction requires intense human supervision
and is, therefore, error prone and cumbersome. Our
approach to four-dimensional (space and time)

trajectory-based conflict detection, where objects are
represented as convex regions, like polytopes, ellipsoids,
or nonconvex regions, comprises preprocessing to de-
compose any nonconvex region as the union of several
convex regions and a two-phase process for detecting
overlaps among convex regions: a broad (coarse) phase
and a narrow (fine) phase. For the broad phase, we use
R-trees and time parameterized R-trees that scale for tens
of thousands of objects. For the narrow phase, we use
interior point-based linear programming for polytopes
and quadratic programming for ellipsoids. McMenemy
(forthcoming) developed a novel pairwise comparison
algorithm that determines whether a pair of ellipsoids
is overlapping, touching, or separated by exploiting two
new Mahalanobis distance-based criteria. These criteria
transform the intersection query problem into a least
squares minimization over a sphere (a quadratic pro-
gramming problem). The resulting algorithm is compu-
tationally more efficient than previous methods used in
video gaming software.

Proactive COAST

Countersmuggling missions involve surveillance
operations (to search, detect, track, and identify
potential threats) and interdiction operations (to
intercept, investigate, and apprehend suspects). Given
the probability of activity (POA) surfaces (Hansen et al.
2012) (see figure 7a), which integrate METOC and
intelligence information (INTEL) to predict where
smugglers may transit, we consider the joint problem
of allocating and routing surveillance and interdiction
assets to best thwart potential smuggling activities
under evolving mission, environment, asset, and
threat contexts. Because the mission’s geographical
environment is large, decision makers assign surveil-
lance assets to specific search regions, and the obser-
vations from these assets are processed to characterize
target types and trajectories and to correlate contacts
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of interest already located with current INTEL. The
newly collected information (for example, INTEL,
detections, interdictions, weather data) serve as
stimuli (a nonnormal situation when values are
out of bounds) for context identification. This in-
formation is relayed to the reachback cell in the
form of situational reports, using the context pro-
tocol (in JavaScript object notation format). The
situational reports are then extracted, processed,
and aggregated to predict new POA maps for the
next planning interval. The predicted POA surfaces
are uncertain and can be prioritized based on the
weight of contraband to be interdicted or the be-
lief in target INTEL. The context-relevant infor-
mation gathered by surveillance assets is commu-
nicated to interdiction assets using the context
protocol for adapting COAs to new contexts. Our
approach uses open-loop optimal feedback and
consists of asymmetric assignments via a branch
and cut algorithm for the surveillance problem and
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approximate dynamic programming coupled with
rollout and Gauss—Seidel techniques for the inter-
diction problem. These algorithms are embedded
in the COAST, an optimization-based decision sup-
port tool in a widget format, integrated with Google
Earth (see figure 7a).

COAST allows flexible targeting by allocating sur-
veillance and interdiction assets based on mission
context. Figure 7b illustrates the prior information
regarding target corridors (white rectangles) and
related uncertainty (red boxes), analogous to possible
locations with possible smuggler activity while taking
into account weather and INTEL for the approximate
time window of departing a specified port, an input
into COAST. In calm weather contexts, the sweep
width? of surveillance assets is 20 nautical miles (nm).
As weather worsens (that is, environmental context
changes), sweep width reduces to 2 nm (change in
asset performance models), affecting target detection
probability of surveillance assets (shown in figures 7c
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and d). With severe weather degradation, proactive
COAST assimilates this change in context and pro-
vides modified search boxes (that is, corrective meas-
ures to overcome a nonnormal scenario), reduced
in size and shifted (change in search task). Because
unfavorable weather conditions adversely affect asset
performance, additional surveillance may be required
(that is, a change in subgoals or mission) to concen-
trate on particular regions before routing interdiction
assets to that location. This example illustrates how
the change in environmental context ripples through
the MEAT-H parameters and results in proactive COA
recommendations by COAST.

Asset Package
Selection and Planning
for Maritime Operations Center

The dynamic resource management in maritime
operations centers emphasizes standardized processes

and methods, centralized assessments and guidance,
networked distributed planning, and decentralized
execution of missions across operations. A typical
operational-level planning process in an abstract
maritime operations center includes several intelli-
gent entities. Future planners (FPs) collaboratively
convert higher-level mission goals or a commander’s
intent into COAs for missions. Each COA decomposes
mission goals into a graph of subgoals or specific
tasks to achieve the goals and includes estimated
requirements and available resources to accomplish
every task. FEach subgoal in the COA is represented
as a task graph with branches and sequel options.
Prior intelligence, historical and forecasted weather
patterns, and logistics play key roles in developing
future plans. Future operations (FOPS) allocate assets
to tasks based on FP-specified COAs. This allocation
is made over a moving time horizon (typically a
3-day horizon T, T + 1, T + 2, where T is the current
day), taking into account dynamically evolving
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intelligence, logistics, and weather information from
reachback cells. Current operations (COPS) mon-
itor the ongoing activities on day T and provide
feedback to FOPS and FP in situation reports on
emerging tasks and requirements, task outcomes,
changes in task requirements, asset (and network)
status, and evolving intelligence. Multilevel plan-
ning agents provide information and decision
support to help FOPS planners evaluate and op-
timize asset-to-task allocations at several levels.
At the execution level, agents suggest different
supporting-supported options across a number of
interdependent tasks in competing task graphs
(representing different missions), taking into account
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uncertainty in weather forecasts, intelligence, and
asset and network status. At platform and warfare
area levels, agents optimize subplatform-to-task
allocations. Other agents compute mission context—
dependent values of information and decisions
and manage the flow of information among deci-
sion makers. Details may be found in Han et al.
(2014) and references therein.

Conclusion and Future Work

In this article, we demonstrated the use of IoT and
Al for maritime decision making by identifying
underlying contexts where different planning



elements communicate to develop relevant courses of
actions for human-machine systems. We discussed
the algorithms for representation, diagnosis, and
prognosis of context and methods to effectively
communicate it across the data-to-decision process.
We validated our algorithms via the development
of proactive decision support tools across maritime
operations, including (1) a multiobjective robust and
adaptive optimization algorithms in the operational
software tool, TMPLAR; (2) waterspace interference
identification algorithms embedded in the opera-
tional software tool, CONFIDENT; (3) dynamic
allocation of surveillance and interdiction assets
for countersmuggling operations via COAST; (4) asset
package selection and planning for MOC planning;
and (5) machine learning and statistical hypothesis
testing algorithms to infer cognitive context in digit
recall, sequential letter recall, and arithmetic tasks
using eye tracking data (SCOUT; Mishra et al. [2018]).

Our future research directions include practi-
cal interactive multiobjective optimization algo-
rithms for resource allocation (for surveillance and
execution) and asset routing, informed by context
(mission, environment, asset, threat, human cog-
nition) and data, featuring adaptive search inter-
faces (for example, scatter, gather for exploratory
search tasks, baseline web search for lookup-type
query tasks), Q-learning, multigrid methods, feature-
based aggregation, rollout, deep reinforcement
learning and approximate policy iteration, and mod-
eling and analysis of cognitive context change
detection in sequential tasks. We plan to use a unified
graph-theoretical framework bringing together con-
cepts from variational free energy optimization in ther-
modynamics and information theory; approximate
dynamic programming from operations research
and stochastic control; active inference-based per-
ception and action selection from neuroscience;
graphical model inference and bounded ration-
ality from probabilistic inference and cognitive
science; and Feynman-Kac path costs in physics
to mathematically represent, evaluate, and design
complex hybrid team structures.
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Notes

1. www.docker.com.

2. Sweep width of any sensor is the width a definite range
sensor has to sweep to detect the same number of objects
per unit time in a uniform distribution of search objects. It
is used to evaluate the probability of detection.
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