
Techniques and Methodology 

Partial Evaluation, Programming 
Methodology, and Artificial Intelligence 

Kenneth M. Kahn 

Uppsala Programmzng Methodology 
and Artijiczal Intelligence Laboratory 

Department of Computing Science 
Uppsala Universaty 

P. 0. Box 2059 
S-750 02 Uppsala Sweden 

Editor’s Note: AI workers have claimed for some time 
that the size and complexity of the program which they at- 
tempt to implement forces the field to continuously improve 
its programming environments. Kahn discusses in this ar- 
ticle another such technique, namely “partial evaluation.” 
Partial Evaluators are transformation systems which have 
knowledge about transformations and the target program- 
ming language and transform general functions into ones 
better tailored to particular situations. 

Kahn notes that partial evaluators whilst being another 
technique for the use with (AI) programming environments, 
can claim to be a subject for study within the field. Hope- 
fully, partial evaluators will enable more complex AI pro- 
grams to be written and that the more powerful tech- 
niques which thus evolve will enable more powerful par- 
tia1 evaluators to be implemented. . . - Derek Sleeman and 
Jaame Carbonell 

Abstract 

in the programming is supported by a sufficiently powerful partial 
evaluator In particular, the process of building levels of interpreters 
and of intertwining generate and test can be partially automated 
Finally, speculations about a more direct connection between AI and 
partial evaluation are presented. 

PARTIAL EVALUATION is a relatively new program 
manipmation technique that is being used to optimize pro- 
grams, generate compilers from interpreters, generate pro- 
grams automatically, open-code functions, and efficiently ex- 
tend languages. A partial evaluator is an interpreter that, 
with only partial information about a program’s inputs, 
produces a specialized version of the program which exploits 
the partial information. 

For example, even a simple partial evaluator for LISP 
can partial evaluate the form (append x y) where x is known 
to be (list f) to (cons f y). This process begins by opening 
the form with the definition of append. 

This article presents a dual dependency between AI and programming 
methodologies AI is an important source of ideas and tools for building 

(defun append 

sophisticated support facilities which make possible certain program- 
(front back) 

ming methodologies These advanced programming methodologies in (cond((null front) back) 

turn can have profound effects upon the methodology of AI research (t (cons (first front) 

Both of these dependencies are illustrated by the example of a new (append (rest front) back))))) 
experimental programming methodology which is based upon partial 
evaluation Partial evaluation is based upon current AI ideas about 
reasoning, representation, and control The manner in which AI sys- The cond is encountered, causing the form (null front) 
terns are designed, developed and tested can be significantly improved to be partial evaluated. Since front is bound to x which is 

THE AI MAGAZINE Spring 1984 53 

AI Magazine Volume 5 Number 1 (1984) (© AAAI)



known to be (list f) this evaluates to nil. This conclusion is 
based upon the definition of null as (lambda (x) (eq x nil)) 
and list as (lambda (x) (cons x nil)). The system can decide 
that (eq (cons f nil) nil) must return nil since its arguments 
are of different types. This reduces the original problem to 
(cons (first (list f)) (append (rest (list f)) y)) which becomes 
(cons f y) since (first (cons f nil)) reduces to f and (append 
(rest (list f)) y) d re uces to (append nil y) which reduces to y. 
For more details about the operation of partial evaluators see 
Emanuelson (1980), Beckman et al (1976) and Kahn (1982b). 

Clearly the availability of a reliable powerful partial 
evaluator can drastically change the way one programs. First 
and foremost, one can concentrate on getting the job done 
and let the partial evaluator take care of the efficiency 
aspects. This differs significantly from the current situa- 
tion of programming in a language which has an optimizing 
compiler because the extent of the optimizations is so much 
greater. A programmer with a partial evaluator is freer to 
write simple pure modular programs, test them, and reason 
about them in that form. It is the partial evaluator that will 
automatically generate a semi-production version. 

To take a simple example, consider the problem of deter- 
mining in LISP whether there are no elements in common 
between two lists. One may have available a function in- 
tersection which returns a list of elements common to two 
lists. One is tempted to write (null (intersection x y)). This, 
however, can lead to much unnecessary computation if the 
lists have many elements in common. My partial evaluator, 
“Partial LISP,” can transform the call (null intersection x 
y)) to (null-intersection-l x y) where null-intersection-l is a 
function the system generates based upon LISP definition 
of intersection. It does no consing and returns nil as soon as 
an element in common is found. 

Briefly, the system begins by creating a new function 
null-intersection-l and adds to the LM-PROLOG database a 
clause stating that any problem similar to the original one 
should use this function. It begins to create the definition of 
null-intersection-l by applying the definition of intersection 
to x and y. Since nothing is known about them this is 
the same as opening the definition in the call. Next the 
system transforms the application of the function null to a 
conditional (the body of intersection) to a conditional where 
the function is applied on each conditional branch. The 
original problem has now been transformed to: 

(cond ((null x) (null nil)) 
((member (first x) y) 
(null (cons (first x) (intersection (rest x) y)))) 

(t (null (intersection (rest x) y)))) 

The first branch can be evaluated to t, the second branch 
to nil thereby avoiding the recursive call and the consing, 
and the third branch can be recognized as an instance of 
the original problem. The definition of null-intersection-l is 
completed and shown below: 

(defun null-intersection-l (x y) 
(cond ((null x) t) 

((member (first x) y) nil) 
(t (null-intersection-l (rest x) y)))) 

A similar example is described in more detail in Kahn 
(1982b). 

Programming methodology in AI shares much with 
general programming methodology but differs in significant 
ways. An AI researcher does not typically understand the 
problem being programmed very well. An essential aspect 
of a very common style of doing AI research is to write pro- 
grams in order to understand something better. Under these 
conditions one is more concerned with the ease of developing, 
testing, modifying and evaluating programs than efficiency 
or correctness. 

An AI programmer cannot typically ignore questions of 
efficiency. Programs often become too slow to test and debug 
effectively. More fundamentally AI is concerned with models 
of intelligence which are computationally constrained. A 
program is not intelligent, regardless of how powerful it is, if 
it takes it more time than the age of the universe to solve a 
problem. The complexity of the underlying algorithms of an 
AI program are significant. 

The major difficulty in AI programming is that the com- 
bined demands of acceptable efficiency and sophisticated be- 
havior forces AI programmers to write extremely complex 
programs which are difficult to understand, much less extend 
or debug. A very important technique for controlling the 
complexity is to build systems in layers of abstractions. A 
major difficulty with exploiting the “layers of abstraction” 
programming technique is that each level is interpreted by 
the one below and the system becomes to slow. When this 
happens a programmer typically either mixes layers (e.g. by 
escaping to LISP) resulting in a faster but more complex 
and less general program or writes a compiler which takes 
descriptions from one level down to the next lower level (e.g. 
the pattern matching compiler in C LIS P). Writing a com- 
piler, however is a large job in itself and the requirement 
that it be kept compatible with the interpreter slows down 
further developments. 

This is a good example of where partial evaluation can 
help. A powerful partial evaluator can flatten the “layers 
of abstraction” and optimize the results so that the over- 
head of interpretation is removed. (Futamura (1971) seems 
to be the first to have realized this ) One can view an in- 
terpreter as a program which takes two inputs: a user pro- 
gram and the inputs to that program. A partial evaluator 
can create specializations of the interpreter for different user 
programs (with their inputs unknown). These specializations 
are effectively compilations of the user prorams into the lan- 
guage in which the interpreter is written. 

I am currently engaged in an experiment to test this 
idea upon an interpreter for an AI programming language. A 
PROLOG interpreter (Clocksin & Mellish 1981) has been writ- 
ten in LISP Machine LISP (Moon et al 1983) called LM- 
PROLOG (Kahn & Carlsson forthcoming). A partial evaluator 

54 THE AI MAGAZINE Spring 1984 



pro&ram 

I LM-Prolog Interpreter I 

The Translation of Partial LISP to LISP . 
Figure 1. 

called “Partial LISP” is being written in LM-PROLOG. Par- 
tial LISP is being applied first to the primitives of the LM- 
PROLOG interpreter to bring their implementation down to 
the LISP level. Then the LM-PROLOG predicates which 
constitute Partial LISP will be reduced to LISP by partial 
evaluating the LM-PROLOG interpreter with respect to the 
partial evaluator. 

The result of this process can be applied to itself by 
partial evaluating Partial LISP with respect to the LM- 
PROLOG interpeter producing an LM-PROLOG compiler. In 
other words, we can specialize the partial evaluator where its 
input is the LM-PROLOG interpreter. The result is a LISP 
program which translates LM- PROLOG programs to LISP, 

I Lisp Translation of Partial Lisp 
I 

I 1 

The Generation of an LM-PROLOG Compiler in LISP. 
Figure 2. 

program 

An LM-PROLOG Compiler in LM-PROLOG. 
Figure 3. 

2.e. an LM-PROLOG compiler. Independently, Carlsson has 
written a compiler for LM-PROLOG and it will be interesting 
to compare the code generated by it and the automatically 
generated compiler (Kahn & Carlsson forthcoming). 

Another experiment I am engaged in is the develop- 
ment and application of a partial evaluator for LM-PROLOG 
called “Partial PROLOG". This partial evaluator (perhaps 
“partial interpreter” would be a better name) is written in 
LM-PROLOG and specializes LM-PROLOG programs. Partial 
PROLOG resembles the PROLOG partial evahrator described in 
Komorowski (1981) with additional capabilities of automati- 
cally handling recursive and “built-in” predicates. I am con- 
sidering applying Partial PROLOG to the implementation of 
Partial LISP where the partial input is the LM-PROLOG 
interpreter. It will be interesting to compare the compiler 
generated this way with the one generated as illustrated in 
Figure 2. 

Other experiments that are being considered are to par- 
tial evaluate languages written in LM-PROLOG (e.g. LM- 
PROLOG versions of Intermission (Kahn 1982a) or Uniform 
(Kahn 1981)). And perhaps programs written on top of lan- 
guages could be reducible. 

This process of using partial evaluation to flatten layers 
of interpretation is in progress and difficult to illustrate upon 
realistic examples. To given an impression of the process, 
consider the partial evaluation of calls to a toy pattern 
matcher. Emanuelson (1980) describes the application of a 
partial evaluator to a “full-fledged” pattern matcher. The 
toy interpreter is defined as follows. 

THE AI MAGAZINE Spring 1984 55 



(defun match (pattern subject) 
(cond ((null pattern) (null subject)) 1 

((eq (first pattern) ‘-) 

;;any length segment 
(or (match (rest1 pattern) subject) 

(match pattern (rest1 subject)))) 

((null subject) nil) 
((eq (first pattern) ‘&) 

;;matches any corresponding element 
(match (rest1 pattern) (rest1 subject))) 

((equal (first subject) (first pattern)) 

(match (rest1 pattern) (rest1 subject))))) 

The call (match pattern xx) where pattern is known 
be ‘(& a b) evaluates to: 

to 

(cond ((eq xx ‘nil) ‘nil) 

((eq (rest1 xx) ‘nil) ‘nil) 

((eq (first (rest1 xx)) ‘a) 
(cond ((eq (rest1 (rest1 xx)) ‘nil) ‘nil) 

((eq (first (rest1 (rest1 xx))) ‘b) 

(null (rest1 (rest1 (rest1 xx)))))))) 

Notice that there are no longer any calls to match and 
the code produced is less compact but faster. 

Another example of how partial evaluation can influence 
AI programming is with respect to the L’generate and test” 
paradigm. Many problems can profitably be broken up into 
generating possibilities and testing to see whether any of 
them satisfy some constraints. Frequently, a much more 
efficient method exists in which the generation and testing 
are intimately intertwined. For example, consider the prob- 
lem of sorting a list The problem can be broken up into 
a generator of permutations of a list and a predicate which 
decides if a list is ordered. These sub-problems are both 
conceptually and computationally easier to deal with than 
the original problem Unfortunately, the corresponding pro- 
gram is absurdly slow. Darlington (1976) applied a program 
transfomation system which has much in common with par- 
tial evaluation to this problem and generated efficient sort 
programs which intertwine the permutation generation and 
ordering test. A powerful partial evaluator should be able to 
do this automatically. 

A general phenomenon in AI and computer science is 
the trade-off between weak but general solutions and strong 
but specialized ones. A partial evaluator’s job is to take 
general programs and generate more efficient but less general 
versions. Trying to apply partial evaluation to building AI 
systems leads one to consider whether AI programming in 
the future might correspond to programming general but 
weak methods, providing (or letting the system discover) 
descriptions of the most common special cases and letting the 
system generate programs to effectively cover those cases. 

56 THE AI MAGAZINE Spring 1984 

AI Techniques in the Implementation 
of Partial Evaluators 

A partial evaluator is very much like an ordinary evalu- 
ator (e.g LISP’s “eval”) except that instead of computing 
the result of some computation it reasons about what the 
result must be. When everything is known that is needed 
for an ordinary evaluator to compute, then a partial evluator 
computes the same results as an ordinary evaluator (though 
typically the partial evaluator is much slower). The purpose 
of partial evaluation is to reason about the result of execut- 
ing a program even if the information necessary to run the 
program is incomplete or partial. (Hence the name partial 
evaluation.) One can view a partial evaluator as a general- 
ized interpreter. 

A powerful partial evaluator needs to use various AI 
techniques such as knowledge bases, self knowledge, depen- 
dency maintenance, inference, modeling of change, etc. Deal- 
ing with a conditional, for example, requires sophisticated 
inferences about the consequences of the predicate being true 
or false and using them in dealing with the different branches 
of the conditional. Dealing with the recursion and iteration 
demands some degree of self knowledge and some dependency 
maintenance to know whether a sub-problem is a proper in- 
stance of a super-problem and thus can become a recursive 
call. Dealing correctly with programs with side-effects is a 
special case of the frame problem. Situational calculus, cir- 
cumscription, non-monotonic or dynamic logic or the like is 
needed to model the changing state of an impure program 

Here is an opportunity to explore a rather incestuous 
relation between partial evaluation and AI. AI programming 
is used to make a partial evaluator more and more powerful, 
while the partial evaluator is used in critical ways to ease 
the task of the AI programming. As the partial evaluator 
improves, it can be used to make further improvements to 
itself making it easier to program more improvements, and 
so on. 

This all sounds very promising, but what are the limita- 
tions to partial evaluation? Too little research on partial 
evaluation has been done to answer this question adequately, 
however too limitations seem intrinsic. One very important 
optimizing transformation which does not fit within the par- 
tial evaluation paradigm is change of representation If the 
original programs which the partial evaluator optimizes com- 
putes with, say, a-lists then the partial evaluator will not 
consider re-writing it using hash tables. Perhaps a program 
transformation system could be built which contains both a 
partial evaluator and a representation shifter. 

The other major limitation of partial evaluation is that, 
unlike program synthesis systems, it has no specification of 
the problem. It has only a (typically inefficient) program 
to do the task and this usually over-specifies the task. For 
example, a LISP program which finds the intersection of 
two lists returns a list of the elements in a particular order 
which may be of no relevance to its callers. The current 
technology behind partial evaluators will perform optimiza- 



tions on such a program but will not consider optimizations 
which might produce a permutation of the output of the 
original intersection program Goad (1980) has explored a 
variation of partial evaluation which begins with a program, 
its specification, and their connections His system can per- 
form optimizations which change the behavior of programs 
so long as they continue to satisfy the specifications. 

Is Partial Evaluation AI? 

We have seen how partial evaluation can be the critical 
tool in a new programming methodology for AI and how it 
can be a domain for applied AI, but is it AI? Is it a cognitive 
process like learning from examples, default reasoning, or 
heuristic search? Or is it only a useful tool in the same class 
as hash tables or LISP compilers? Abstractly partial evalua- 
Con is a process which takes general procedural knowledge 
and produces effective procedures for special cases Such a 
process is common in people. 

Partial evaluation can be viewed as a kind of learning 
from examples which is the reverse of the AI paradigm. 
Instead of going to a general notion from examples, par- 
tial evaluation goes from the general notion and examples 
to more specialized knowledge. Epistemologically partial 
evaluation does no learning, but from the point of view of 
generating effective expert knowledge it does. People seem 
to rarely reason from general principles but instead use spe- 
cialized knowledge. 

Exploring partial evaluation from this AI point of view 
is an exciting avenue of research What began as a program- 
ming tool, has become a domain for applied -41, and is be- 
coming a powerful programming methodology for AI, might 
become a part of AI. 

References 

Beckman: L , Haraldsson, A , Oskarsson 0 , & Sanderwall, E 
(1976) A partial evaluator and its use as a programming tool, 
Artificzal Intelligence, 7, 4, 319-357 

Clocksin, W & Mellish, C. (1981) Programmzng in Prolog. Springer- 
Verlag, Berlin, Heidelberg, New York 

Darlington, J (1976) A syntheszs of several sort programs Re- 
search report No 23a, Department of Artificial Intelligence, 
University of Edinburgh 

Emanuelson: P (1980) Performance enhancement in a well- 
structured pattern matcher through partial evaluation Lenkop- 
zng Studies in Science and Technology Dassertatzons, hTo 55, 
Software Systems Research Center, Linkoping University. 

Futamura, Y (1971) Partial Evaluation of Computation Process 
- an -4pproach to a Compiler-Compiler Systems Computers 

Controls, Vol. 2, No 5, August, pp 721-728 

Goad, C (1980) Computatzonal Uses of the Manzpulatzon of For- 
mal Proofs Doctoral thesis, Stanford University , August 

Kahn, K (1981) Uniform - A Language based upon Unification 
which unifies (much of) LISP: Prolog, and Act1 IJCA I- 7, 
August 

Kahn, K. (1982a) Intermission - Actors in Prolog In S-A 
Tarnlund & K Clark (Eds ) Logzc Programmzng New York, 
NY: Academic Press. 

Kahn, K (1982b) A partial evaluator of LISP written in Prolog 
Proceedzngs of the First Logzc Programmzng conference, Mar- 
seille France, September 

Kahn, K and Carlsson, M. (forthcoming) How to Implement 
Prolog on a LISP Machine In J Campbell [Ed ) Issues in 
Prolog Implementatzons West Sussex: Great Britain: Ellis Hor- 
wood Ltd 

Komorowski, H J (1981) A Specification of an Abstract Prolog 
Machine and its application to Partial Evaluation Linkopzng 
Stvdaes an Science and Technology Dissertatrons, No 69, Software 
Systems Research Center, Linkoping University, Sweden 

Moon! D , Stallman R ? & Weinreb D (1983) LISP Machzne 
Manual. MIT AI Laboratory 

He1 The Al Business 
1 Commercial Uses of Artificial Intelligence 

edited by Patrick H Winston and Karen A. Prendergast 
Professionals III industry. AI researchers. and financial analysts discuss 
real-world applications of AI technology in the computer industry, medi- 
cine, the oil Industry, and electronic destpn They speculate on trends in 
factory automation. compare research in Japan and the U S , note the 
pros and cons of investment opportunities. and talk about where the key 
ideas have come from and where they are going to come from 
$15 95 

THE AI MAGAZINE Spring 1984 57 




