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Abstract 

In keeping with a desire to abstract general principles in AI, this 
article begins to examine some relationships among heuristic learn- 
ing in search, classification of utility, properties of certain structures, 
measurement of acquired knowledge, and efficiency of associated learn- 
ing. In the process, a simple definition is given for conceptual knowledge, 
considered as information compression The discussion concludes that 
domain-specific conceptual knowledge can be acquired Among other 
implications of the analysis is that statistical observation of probabil- 
ities can result in the equivalent of planning, in low susceptibility to 
error, and in efficient learning. 

SEVERAL RESEARCHERS HAVE INDICATED that more in- 
tegration and synthesis may be imminent in AI. In a panel 
discussion on “Challenges of the Eighties” at a workshop 
on Machine Learning recently held (Proc. IMLW, 1983), 
several such opinions were stated. Among other issues, 
Michalski stressed the importance of unification of terminol- 
ogy and extraction of general principles. Amarel suggested 
we need both theory and application, even within a single 
project (one supports the other).Another indicator: Chapter 
XIV Handbook of Artificial Intelligence (Dietterich, London, 
Clarkson & Dromey, 1982) compares and contrasts generali- 
zation methods; Michalski (1983) develops a unified theory for 
induction, and characterizes its types. (In fact synthesis is 
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wider than this: e.g. AI is being related to cognitive science 
(Pylyshyn, 1982) and with control theory and pattern recog- 
nition (Buchanan, Mitchell & Smith, 1978).) 

This article suggests new ideas and attempts to re- 
late them to some existing ones in AI. While the focus is 
heuristic learning in search, it is examined with broader in- 
tent. Among the issues discussed are the power of selected 
structures, the measurement of acquired knowledge, and 
the efficiency of associated learning. Viewpoints include 
evaluation as utility classification, and knowledge as informa- 
tion compression. Consider for example the current aware- 
ness that domain-specific knowledge is necessary for real 
results with interesting problems. This is generally high 
level or abstract knowledge. But precisely what do these 
terms mean? Does domain-specificity preclude autonomous 
knowledge acquisition from low level data? To provide a con- 
text for analysis, let us reconsider a well established topic in 
a different light. 

Evaluation Functions as Plans 

During search, Samuel’s (1963, 1967) checker player as- 
sessed board positions (nodes) as candidates for expansion 
using an evaluation function appraising the overall utility of 
each position. Such a function is normally a composition of 
features, which are themselves elementary functions measur- 
ing various aspects of nodes. Typical features for checkers 
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Fifteen puzzle illustration. In order to develop a concise and useful evaluation function, features can be defined, such as fr 
(sum of distances of tiles from home) and f 2 ( number of pair reversals). Notice the ‘7’ and ‘3’ are reversed in & through Aa; 
when such anomalies are allowed to form or remain, the puzzle may erroneously appear close to the goal if fr is used alone. 
In the fi, fi feature space, vectors near the origin are generally better (see values in the inset table). 

Figure 1. 
include piece advantage, control of center, mobility, etc. 1963). A linear model imposes restrictions, although these 
Another example is shown in Fig. 1. Here just two features can sometimes be avoided (Rendell, 198313; Samuel, 1967). 
are used in a heuristic function for the fifteen puzzle: the However a more serious shortcoming remains: features are 
obviously effective fi = the sum of ‘city block’ distances actually high level constructs, typically containing about 
of the tiles to their home positions, and another penalty f2 80% of the conceptual knowledge (as we shall see later). The 
= the number of ‘reversals’ (adjacent tiles being in their unanswered question of how to mechanize formation of new 
correct positions except switched) (Doran & Michie, 1966). terms (features) was probably the main factor in the decline 
Features such as these are often combined linearly: if f is a of this sort of learning approach. It is a hard problem. 
given vector of features, the evaluation function is H = b. f, 
where b is the weight vector (Rendell, 1981, 1983a; Samuel, Despite this, there is no inherent theoretical reason for 

abandoning evaluation functions as part of a framework for 
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learning heuristics (for knowledge acquisition). As Feldman 
and Yakimovsky (1974) point out, the evaluation function 
is fully powerful. As such, it is also analogous to other ap- 
proaches. Consider Fig. 2(a) where a solution path is trans- 
formed into a path in feature space, which could be called 
the feature trace (of a solution). What can be thought of as 
a complete strategy or plan is reflected in some collection of 
feature traces. For example, the plan “Make a move so as 
to bring some tile closer to home” corresponds to a (large) 
set of traces like the one in Fig. 2(a). As long as enough 
discriminating features are incorporated, any strategy can 
be represented by an appropriate evaluation function, which 

will in turn determine the feature traces. Sophisticating a 
plan may require additional features in our parallel view. For 
example, “If there are any reversals, get rid of them” can be 
added to the naive original advice by using f2 of Fig. 2(b). 
Encompassing a grand strategy, many plans can coexist in 
feature space; each corresponds to a distinct category of fea- 
ture traces. 

Whatever traces are followed in a solution, the ideal 
pattern is high node utzlity on the solution path and low 
utility elsewhere. In search two distinct but related measures 
of utility have been used: the path distance remaining to 
the goal (Hart, Nilsson & Raphael, 1968; Nilsson, 1971) 

(a) 

(b) 

Feature traces of solutions. Irregular solution paths followed in feature space become unsurprising when enough appropriate 
features are present. Here fl and f2 are the distance and reversal scores for the fifteen puzzle. In the one-dimensional fl space 
(a) solutions sometimes trace strange paths. However they appear normal in the fl, f2 space (b), where the distance score is 
temporarily worsened to unclog a reversal. Whole bundles of feature traces reflect a strategy or plan, such as ‘Temporarily 
worsen the distance score if a reversal can be removed.’ 

Figure 2. 

THE AI MAGAZINE Winter, 1983 21 



and some sort of likelihood of usefulness (Nau, 1983; 
Pearl 1982; Rendell, 1983a, 1983b; Slagle & Bursky, 1968; 
Slagle & Farrel, 1971). (R ecently the latter has received more 
attention). In practice either of these can only be estimated; 
moreover features are generally coarse measures. Hence, 

actual feature traces track real utility only roughly. Most 
features are designed individually to bear a nearly monotonic 
relationship to utility (consider the ones mentioned above). 

Although most learning involving evaluation has started 
with features already defined by the programmer (Quinlan, 
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Levels of conceptual knowledge in search. Elementary data represent fully detailed knowledge but no abstraction, and so are 
massive and infeasible to gather. At the other extreme, maximal information compression avoids loss of expressive power while 
being very concise. Intermediate representations are designed to facilitate operation; for example features should discriminate 
utility well and bear a nearly monotonic relationship with it but relatively mild interaction amongst each other. In any case, 
some rules can always be given for the classification of individual table entries at the data level; those rules are concepts, and 
features are one tool for concise and orderly description, i.e., for concept attainment. 

Figure 3. 
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1983; and Rendell, in preparation; are exceptions), the ul- 
timate goal is to create a system which can learn everything 
by abstacting from raw data. Chapter XIV of the The Hand- 
book of Artificial Intelligence (Dietterich, 1982) characterizes 
three kinds of generalization learning. The simplest form is 
single concept, the second is multiple concept, and the most 
difficult is performance of multiple step tasks, requiring a se- 
quence of operators. From one point of view the automatic 
construction of an evaluation function can be seen as a prob- 
lem of learning multiple concepts: each utility value can be 
considered abstractly as having an antecedent, a rule in the 
form of statements about features (see Fig. 3). There are 
many utility categories; often an infinite number, although 
finiteness can always be imposed without loss of power as 
long there is an upper bound on solution length (see the next 
section). From another viewpoint, however, the use of an 
evaluation function intrinsically guides operator application 
(consider Fig. 1). Explicit concept learning entails implicit 
operator sequencing. Moreover, since heuristics govern fea- 
ture traces (in fact, diverse kinds of traces), learning utility 
concepts eventually results in disguised planning or strategy 
formation. This is reminiscent of animal perception or pat- 
tern recognition effecting some sort of gestalt. 

Let us examine more closely the idea of categorizing 
nodes according to their utility. 

Classification, Compression, and 
Conceptual Knowledge 

Theoretically, an evaluation function can be expressed 
in very primitive form. The set of situations at or close to 
the level of the data could be represented as a table listing 
the node description or measurement vector along with its 
corresponding utility value (Fig. 3). The measurements 
might be quite basic, for example the individual city block 
distances, one for each individual tile in the fifteen puzzle, or 
fully elementary, for instance the contents of each square of 
the board in checkers. A complete (and accurate) table based 
on such fundamental measurements would enable perfect 
choice of a node to expand but the quantities are immense. 
For these two examples roughly 615 = 23g and about 532/4 
= 272 table entries (respectively) would be required. 

Next consider a fully abstract heuristic, the topmost 
level of Fig. 3. How many utility classes are required for 
perfect state evaluation, i.e. how many categories are needed 
for sufficient resolution of the worth of a state? Since optimal 
solution (shortest path length and fewest nodes developed) 
for a state space problem requires only knowledge of path 
length remaining to the goal (Hart, Nilsson & Raphael, 1968; 
Nilsson, 1971) the number of classes need be just the maxi- 
mum of the shortest solution for any problem instance. For 
a game, half the number of moves in a long contest might 
be sufficient. (These numbers are roughly 75 for the fifteen 
puzzle and somewhat less for checkers). Although perfect 
prior knowledge of solution length is not feasible in interest- 
ing cases, actual evaluation functions might be expected to 

follow a similar pattern. To test this assertion, an experiment 
with the best heuristic known for the fifteen puzzle (Rendell, 
1981, 1983a) was conducted. When the evaluation function 
was discretized, the relationship of performance to number 
of classes was as shown in Fig. 4. 

Consequently, in the construction of a heuristic, the 
number of meaningful utility classes is reduced from about 
23g to 26 for the fifteen puzzle, and from roughly 272 to 26 
for checkers. Another expression of these facts is that the 
information of a level I is log2 NI where NI is the number of 
classes at level I, and that the information compression be- 
tween level I and level I+1 is log NI/NI+~ (Watanabe, 1972). 
Hence the compressions in these two examples are the huge 
amounts of about 33 bits and 66 bits respectively. 

Define the conceptual knowledge present at a level to 
be exactly the information compression required to form 
the classes at that level, from the most elementary classes 
(the raw data). An evaluation function which compresses 
information just to the point at which performance begins 
to suffer could be said to capture maximum conceptual 
knowledge. 

Now consider the intermediate, feature level (Fig. 3) 
from the viewpoint of conceptual knowledge. The feature 
space volume is about 2 l2 for the above case with the fifteen 
puzzle (Rendell, 1981) and approximately 221 with checkers 
(Samuel, 1963). This volume is the number of classes at the 
feature level. Computing the information compression at all 
three levels, we find that for each of these two examples, 
about 80% of the maximum conceptual knowledge is cap- 
tured in the middle (feature) level, while the remaining 20% 
is expressed in the evaluation function as a particular com- 
bination of features. Most of the knowledge is contained in 
the features. This explains why composition of the heuristic 
from features (even allowing feature interaction) is not very 
impressive from the point of view of full inductive capability 
(since general learning should create the features themselves). 
It also suggests the intervention of more levels between raw 
data and typical high level features (Rendell, in preparation; 
Watanabe, 1972) has found that uniform reduction is most 
effective.) Conceptual knowledge implies not only informa- 
tion compression, but also rational ordering. As indicated 
in Fig. 3, an exhaustive listing of measurement vectors has 
completely haphazard utility values (i.e. the utility surface 
in measurement space is extremely irregular). Features begin 
to impose regularity; an ordering based on feature values 
groups elements from the low level table into locally uniform 
utility categories (i.e. features are surjections-their range 
is smaller than their domain, and the utility surface in fea- 
ture space is fairly smooth; consider for example the two 
illustrative features for the fifteen puzzle). Finally, the ul- 
timate evaluation function merges the features to construct a 
meaningful global arrangement of the smaller utility clusters. 

Equivalently, conceptual knowledge implies conceptu- 
alization.Features represent rational components of concepts. 
The evaluation function codes complete concepts. Each con- 
cept has a worth. Features associate partially formed con- 
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cepts with (here numerical) values. The evaluation function 
essentially pairs each full concept or antecedent rule r, with 
its consequent utility u (Fig. 3). Meaningful classification, 
rational ordering, and concept attainment are interrelated. 

An Important Knowledge Structure 

This suggests a knowledge structure (T, u) for pairing 
concepts (full or partial) with their utilities. This proposed 
structure, which is different from the data, the features, and 
the ultimate evaluation function, can be used for conceptual 
development. Fig. 5 shows a straightforward choice, a par- 
tition of the feature space in question, where each region is 
a (hyper)rectangle T aligned with the axes, along with its 
associated utility u. Such a rectangle is also a concept repre- 
senting a conjunction of feature ranges.’ (This is for ordered 

feature values; a different treatment is required when feature 
values are unordered sets.) 

A region set (r, u), has been used successfully in a prob- 
abilistic learning system (PLS - Rendell, 1981, 1983a, 1983b), 
where the the utility u is a goal oriented quantity, the propor- 
tion of nodes eventually participating in a solution to a state 
space problem or win in a game. The utility thus predicts 
likelihood of success in problems yet to be encountered, as 
a function of feature values (the utility is thus a conditional 
probability (Rendell, 1983a; and c.f. Nau, 1983). With a 
discrete mode of evaluation, if (T, u) is a region of the cur- 
rent set and if the concept r is satisfied by a configuration A 

‘Since general class membership (i.e a utility category U) can be 
entailed by a set of conjunctions of feature ranges (by a set of rectangles 
r), this is equivalent to a disjunction of logical formulas in conjunctive 
normal form implying u (Nilsson, 1981); and thus fully general 
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Discretizing an evaluation function. When utility values are forced into discrete categories by arbitrary rounding, the function 
becomes a classifier. Depending on the number of categories demanded N, the performance may be unaffected or it may 
change. D is the average number of states expanded before solution (circles) and L is the average solution length (triangles), 
for a random sample of 32 fifteen puzzles. Unlike D, L improves with smaller N since the heuristic is imperfect and lower N 
means more nearly breadth-first search. 

Figure 4. 
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A i simple region set, a partition of feature space. Shown are rectangles and their associated utilities (inside). A region is a 
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means of expressing a concept and its worth; it is equivalent to a set of statements in the first order predicate calculus with 
the concept as precondition and the utility as consequent. 

Figure 5. 

being assessed (i.e. if A maps into T), then A has the utility u. 
With smoothed evaluation, a curve fitting technique general- 
izes from the regions to generate a parameterized evaluation 
function H = expb.f. (It is this heuristic that was made 
artificially discrete for Fig. 4.) 

In a PLS, sets of these regions gradually accumulate 
knowledge, revising estimates u and refining feature space 
volumes (concepts) r into units just adequate to express 
known relationships. The result is an effective economy, 
a distillation of experience. In one sense, the region set is 
a refinement of Samuel’s (1967) signature tables which did 
not alter data categories automatically. The novelty of a 
PLS is that it computes statistics measuring solution density 
in feature space, and uses these data to guide knowledge 
refinement. Although it is data driven, a PLS is insensitive 
to noise since it is stochastic (Samuel, 1963, 1967) which 
are different but also statistical). Most concept formation 
systems have difficulty with incorrect data. A PLS is quite 
natural; Bruner et. al. (Bruner, 1956) emphasized the human 
use of probabilities, features, and goal orientation. 

Some problems appear simpler in a PLS (Rendell, in 
preparation). For example, when the method is extended to 
games, the horizon effect can be absorbed in the statistics, 
as environments change during incremental learning.2 

The region set is potentially useful in many domains; 
whenever, in fact, the worth of something is observable and 
contingent on a concept. For example an expert system could 
use the same organization, perhaps with one region set for 

2The horizon effect is the misleading information resulting when search 
is prematurely cut off in the middle of, say, a sacrifice (Berliner, 1973) 
In a unified method for state space problems and games using the region 
set statistical approach, there are two general ways of assigning credit 
to nodes: backed-up values can be either discrete (on a solution path 
or not in a problem; win/lose/draw in a game), or else continuous, the 
result of applying an existing heuristic to the tip nodes (Rendell, in 
preparation). This is often mentioned with minimax but here learning 
can occur using either of these methods exclusively With the former, 
training instances are initially easy problems or end games; with the 
latter method, some initial evaluation function is given, then improved 
In either case the ability of the solver or player is bootstrapped using 
statistical results of experience and natural goal orientation (Rendell, 
1983; Rendell, in preparation) 
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each production rule (or for each structured arrangement 
of them). Then conditions for firing become probabilistic, 
and easy to learn and modify. (Compare Michdlski’s (1983) 
internal disjunction.) This knowledge structure, the region 
set, is of wider use. When the features are replaced by 
elementary measurements, it becomes a good starting point 
for inductive inference of features (Rendell, in preparation). 

One observation about typical region sets relates to con- 
ceptual knowledge: they often have fewer members than the 
effective number of concepts at the heuristic level; when the 
evaluation function is inferred information is created, accord- 
ing to the definition of Section 3. This is another statement 
of the fact that induction occurs (Watanabe, 1969). 

To summarize: Regions express utility-concept relation- 
ships fully and provide a framework for condensation of 
experience by collecting probabilities stochastically. The 
statistical use of observations has several desirable conse- 
quences. Error is absorbed, experience can be updated and 
concepts can be precisely refined according to current data. 
Another advantage is efficiency, discussed below. 

Efficiency in Knowledge Acquisition 

As pointed out in a previous section, learning systems 
that allow the programmer to define the features are already 
given, a priori, about 80% of the total conceptual knowledge. 
Let us first consider this 20% problem, the formation of an 
evaluation function from its component features. Despite 
this 80% advantage, creation of a good evaluation func- 
tion is still difficult to mechanize with reasonable efficiency. 
(although many approaches have succeeded, e.g. Rendell, 
1983a; Samuel, 1963, 1967). 

Instead of a learning system, some traditional optimiza- 
tion method can be used to find the best choice of weight 
vector b for feature vector f in the evaluation function H = 
exp b.f. In state space problem solving, a likely choice would 
be to minimize the number of nodes developed D (this is 
an objective function). Since the variances in D are typi- 
cally high (even when test problems are multiple), a statis- 
tical technique would be chosen, such as fitting second de- 
gree polynomials in the weight space (higher dimensional 
parabolas, with D as the dependent variable). This response 
curve fitting, though, is very expensive. The value of D 
for typical weight vectors is too high for computational 
feasibility. Even if the location of the optimal b is already 
known approximately, the process is inefficient. Experiments 
have shown the increased efficiency and reliability of a more 
informed scheme, the learning system PLSl (Rendell 1981, 
1983a). Intuitively it is clear why this is so: the optimiza- 
tion technique obtains just a single number (D) and disposes 
of everything else. In contrast, a useful learning system ex- 
tracts much more information from search trees. In both 
Samuel’s system (1963,1967) and PLSl, every node devel- 
oped contributes to the assessment of every feature. This 
is possible because information is available about the use- 
fulness of a node. Nodes are mapped into feature space 

where credit assignment to a node becomes credit assignment 
to each individual feature. The summation of all contribu- 
tions provides an informed general picture of feature-utility 
relationships. 

Similarly Quinlan (1983) shows the computational ad- 
vantage of a feature classification and information theory 
approach to search, compared with minimax; his ID3 system 
makes use of individual nodes in the judgment of utility by 
features during evaluation. See also Pearl’s suggestion of a 
probabilistic approach (Pearl, 1982). 

Good use of information is the key to success in heuris- 
tic formation. Consider again the utility class discussion. At 
the level of the raw data, a table of utilities can theoreti- 
cally be constructed for every individual state. But operat- 
ing solely with this great detail, a rote learning system would 
never gather much knowledge in practice. Furthermore, pat- 
terns among table entries would never be discovered. An 
ability to assign many states to a single, meaningful class is 
of double importance. First, during evaluation, states which 
have never been encountered can be judged since they are 
‘similar to’ other members of the class. Secondly, during 
learning, data can support each other and so a greater as- 
surance is possible of the utility values ascribed to each con- 
cept. 

This mutual data support is straightforward when fea- 
tures are already given. Relationships between dependent 
variable (utility) and independent variables (here the fea- 
tures) are smooth; permitting curve fitting which allows both 
interpolation during evaluation and mutual support during 
learning. Mutual data support is more difficult with elemen- 
tary measurements, but perhaps this same principle can still 
be applied (Rendell, in preparation). 

Conclusions 

This article has attempted to continue synthesis of some 
principles in knowledge use, acquisition and learning. A 
definition of conceptual knowledge has been given in a 
limited domain. Relationships have been expressed between 
evaluation functions of heuristic search, on the one hand, and 
planning, classification, knowledge acquisition, and efficiency 
on the other. An evaluation function estimates the utility 
class u into which a node should be placed; the basis for 
the decision is the satisfaction of a concept r. The forma- 
tion of such concepts is natural and powerful when they are 
represented as volumes in feature space and probabilistic 
measures of the utility are incorporated. First, the informa- 
tion gathering process creates implicit plans as a side effect. 
Secondly, observation of probabilities provides a straightfor- 
ward method both for this data collection and for its use. 
The statistical approach lowers susceptibility to error, and 
allows appropriate revision of utility and refinement of con- 
cepts. Finally, the process is efficient because of good use of 
data encountered. This abstraction of knowledge structure 
and statistical method for generalization result in a capable 
system, and seemingly wide application. 
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Domain-specific conceptual knowledge can be acquired 
autonomously from lower level information, and perhaps ul- 
timately from elementary data. 
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