
Toward a Unified Approach for
Conceptual Knowledge Acquisition

Larry A. Rendell

Department of Computing and Information Science
University of Guelph

Guelph, Ontario, Nl G 2 WI, CANADA

Abstract

In keeping with a desire to abstract general principles in AI, this
article begins to examine some relationships among heuristic learn-
ing in search, classification of utility, properties of certain structures,
measurement of acquired knowledge, and efficiency of associated learn-
ing. In the process, a simple definition is given for conceptual knowledge,
considered as information compression The discussion concludes that
domain-specific conceptual knowledge can be acquired Among other
implications of the analysis is that statistical observation of probabil-
ities can result in the equivalent of planning, in low susceptibility to
error, and in efficient learning.

SEVERAL RESEARCHERS HAVE INDICATED that more in-
tegration and synthesis may be imminent in AI. In a panel
discussion on “Challenges of the Eighties” at a workshop
on Machine Learning recently held (Proc. IMLW, 1983),
several such opinions were stated. Among other issues,
Michalski stressed the importance of unification of terminol-
ogy and extraction of general principles. Amarel suggested
we need both theory and application, even within a single
project (one supports the other).Another indicator: Chapter
XIV Handbook of Artificial Intelligence (Dietterich, London,
Clarkson & Dromey, 1982) compares and contrasts generali-
zation methods; Michalski (1983) develops a unified theory for
induction, and characterizes its types. (In fact synthesis is

The author would like to thank Dave Coles for his comments on a draft
of this article.

wider than this: e.g. AI is being related to cognitive science
(Pylyshyn, 1982) and with control theory and pattern recog-
nition (Buchanan, Mitchell & Smith, 1978).)

This article suggests new ideas and attempts to re-
late them to some existing ones in AI. While the focus is
heuristic learning in search, it is examined with broader in-
tent. Among the issues discussed are the power of selected
structures, the measurement of acquired knowledge, and
the efficiency of associated learning. Viewpoints include
evaluation as utility classification, and knowledge as informa-
tion compression. Consider for example the current aware-
ness that domain-specific knowledge is necessary for real
results with interesting problems. This is generally high
level or abstract knowledge. But precisely what do these
terms mean? Does domain-specificity preclude autonomous
knowledge acquisition from low level data? To provide a con-
text for analysis, let us reconsider a well established topic in
a different light.

Evaluation Functions as Plans

During search, Samuel’s (1963, 1967) checker player as-
sessed board positions (nodes) as candidates for expansion
using an evaluation function appraising the overall utility of
each position. Such a function is normally a composition of
features, which are themselves elementary functions measur-
ing various aspects of nodes. Typical features for checkers

THE AI MAGAZINE Winter, 1983 19

AI Magazine Volume 4 Number 4 (1983) (© AAAI)

46 210

w

46 2

/\

Fifteen puzzle illustration. In order to develop a concise and useful evaluation function, features can be defined, such as fr
(sum of distances of tiles from home) and f 2 (number of pair reversals). Notice the ‘7’ and ‘3’ are reversed in & through Aa;
when such anomalies are allowed to form or remain, the puzzle may erroneously appear close to the goal if fr is used alone.
In the fi, fi feature space, vectors near the origin are generally better (see values in the inset table).

Figure 1.
include piece advantage, control of center, mobility, etc. 1963). A linear model imposes restrictions, although these
Another example is shown in Fig. 1. Here just two features can sometimes be avoided (Rendell, 198313; Samuel, 1967).
are used in a heuristic function for the fifteen puzzle: the However a more serious shortcoming remains: features are
obviously effective fi = the sum of ‘city block’ distances actually high level constructs, typically containing about
of the tiles to their home positions, and another penalty f2 80% of the conceptual knowledge (as we shall see later). The
= the number of ‘reversals’ (adjacent tiles being in their unanswered question of how to mechanize formation of new
correct positions except switched) (Doran & Michie, 1966). terms (features) was probably the main factor in the decline
Features such as these are often combined linearly: if f is a of this sort of learning approach. It is a hard problem.
given vector of features, the evaluation function is H = b. f,
where b is the weight vector (Rendell, 1981, 1983a; Samuel, Despite this, there is no inherent theoretical reason for

abandoning evaluation functions as part of a framework for

20 THE AI MAGAZINE Winter, 1983

learning heuristics (for knowledge acquisition). As Feldman
and Yakimovsky (1974) point out, the evaluation function
is fully powerful. As such, it is also analogous to other ap-
proaches. Consider Fig. 2(a) where a solution path is trans-
formed into a path in feature space, which could be called
the feature trace (of a solution). What can be thought of as
a complete strategy or plan is reflected in some collection of
feature traces. For example, the plan “Make a move so as
to bring some tile closer to home” corresponds to a (large)
set of traces like the one in Fig. 2(a). As long as enough
discriminating features are incorporated, any strategy can
be represented by an appropriate evaluation function, which

will in turn determine the feature traces. Sophisticating a
plan may require additional features in our parallel view. For
example, “If there are any reversals, get rid of them” can be
added to the naive original advice by using f2 of Fig. 2(b).
Encompassing a grand strategy, many plans can coexist in
feature space; each corresponds to a distinct category of fea-
ture traces.

Whatever traces are followed in a solution, the ideal
pattern is high node utzlity on the solution path and low
utility elsewhere. In search two distinct but related measures
of utility have been used: the path distance remaining to
the goal (Hart, Nilsson & Raphael, 1968; Nilsson, 1971)

(a)

(b)

Feature traces of solutions. Irregular solution paths followed in feature space become unsurprising when enough appropriate
features are present. Here fl and f2 are the distance and reversal scores for the fifteen puzzle. In the one-dimensional fl space
(a) solutions sometimes trace strange paths. However they appear normal in the fl, f2 space (b), where the distance score is
temporarily worsened to unclog a reversal. Whole bundles of feature traces reflect a strategy or plan, such as ‘Temporarily
worsen the distance score if a reversal can be removed.’

Figure 2.

THE AI MAGAZINE Winter, 1983 21

and some sort of likelihood of usefulness (Nau, 1983;
Pearl 1982; Rendell, 1983a, 1983b; Slagle & Bursky, 1968;
Slagle & Farrel, 1971). (R ecently the latter has received more
attention). In practice either of these can only be estimated;
moreover features are generally coarse measures. Hence,

actual feature traces track real utility only roughly. Most
features are designed individually to bear a nearly monotonic
relationship to utility (consider the ones mentioned above).

Although most learning involving evaluation has started
with features already defined by the programmer (Quinlan,

Class Utility

1 1.00
2 .98
3 .96
.
.

Features

_---- , -> 1;
I .
I .
I .
I ,--> 28
I / .

I I .
I I .

Utility
’ ,’

00...03 ' -46 - - -,i. - - *
I . 1 I I

. I I
I I

0 0 .:. 1 0 <-., '(.&6 -- + - _ -‘,
00 . . . 11 , .78 , --', I

1
\ I

\
I Measures

I

\
I ‘1.. 00000 . . .
\ \ -._- - - - ---0 0 0 0 0 . . .
I I 00000 . . .
I I .
I
I 1’

.

I
\‘\ .

I’ \
--------- 0 0 0 0 0 . . .

\ 00000 . . .
! ’ ‘-.I_ --------- -0 0 0 0 0 . . .

I 1 ’ .
1 \‘

\’ ‘._
.

I
I’ \ -_--m-o 0 0 0 0 0’ l . . ,

1’ I 00000 . . .

I ‘. .---------- 0 0 0 (J 0 ...

I \
.

I I .

I I .

000 0.95
0 0 1 .79
002 .62

0 10 .78
011 .66
012 .47

100 .78
101 .67
102 .'46

.78

.46

Utility

Levels of conceptual knowledge in search. Elementary data represent fully detailed knowledge but no abstraction, and so are
massive and infeasible to gather. At the other extreme, maximal information compression avoids loss of expressive power while
being very concise. Intermediate representations are designed to facilitate operation; for example features should discriminate
utility well and bear a nearly monotonic relationship with it but relatively mild interaction amongst each other. In any case,
some rules can always be given for the classification of individual table entries at the data level; those rules are concepts, and
features are one tool for concise and orderly description, i.e., for concept attainment.

Figure 3.

22 THE AI MAGAZINE Winter, 1983

1983; and Rendell, in preparation; are exceptions), the ul-
timate goal is to create a system which can learn everything
by abstacting from raw data. Chapter XIV of the The Hand-
book of Artificial Intelligence (Dietterich, 1982) characterizes
three kinds of generalization learning. The simplest form is
single concept, the second is multiple concept, and the most
difficult is performance of multiple step tasks, requiring a se-
quence of operators. From one point of view the automatic
construction of an evaluation function can be seen as a prob-
lem of learning multiple concepts: each utility value can be
considered abstractly as having an antecedent, a rule in the
form of statements about features (see Fig. 3). There are
many utility categories; often an infinite number, although
finiteness can always be imposed without loss of power as
long there is an upper bound on solution length (see the next
section). From another viewpoint, however, the use of an
evaluation function intrinsically guides operator application
(consider Fig. 1). Explicit concept learning entails implicit
operator sequencing. Moreover, since heuristics govern fea-
ture traces (in fact, diverse kinds of traces), learning utility
concepts eventually results in disguised planning or strategy
formation. This is reminiscent of animal perception or pat-
tern recognition effecting some sort of gestalt.

Let us examine more closely the idea of categorizing
nodes according to their utility.

Classification, Compression, and
Conceptual Knowledge

Theoretically, an evaluation function can be expressed
in very primitive form. The set of situations at or close to
the level of the data could be represented as a table listing
the node description or measurement vector along with its
corresponding utility value (Fig. 3). The measurements
might be quite basic, for example the individual city block
distances, one for each individual tile in the fifteen puzzle, or
fully elementary, for instance the contents of each square of
the board in checkers. A complete (and accurate) table based
on such fundamental measurements would enable perfect
choice of a node to expand but the quantities are immense.
For these two examples roughly 615 = 23g and about 532/4
= 272 table entries (respectively) would be required.

Next consider a fully abstract heuristic, the topmost
level of Fig. 3. How many utility classes are required for
perfect state evaluation, i.e. how many categories are needed
for sufficient resolution of the worth of a state? Since optimal
solution (shortest path length and fewest nodes developed)
for a state space problem requires only knowledge of path
length remaining to the goal (Hart, Nilsson & Raphael, 1968;
Nilsson, 1971) the number of classes need be just the maxi-
mum of the shortest solution for any problem instance. For
a game, half the number of moves in a long contest might
be sufficient. (These numbers are roughly 75 for the fifteen
puzzle and somewhat less for checkers). Although perfect
prior knowledge of solution length is not feasible in interest-
ing cases, actual evaluation functions might be expected to

follow a similar pattern. To test this assertion, an experiment
with the best heuristic known for the fifteen puzzle (Rendell,
1981, 1983a) was conducted. When the evaluation function
was discretized, the relationship of performance to number
of classes was as shown in Fig. 4.

Consequently, in the construction of a heuristic, the
number of meaningful utility classes is reduced from about
23g to 26 for the fifteen puzzle, and from roughly 272 to 26
for checkers. Another expression of these facts is that the
information of a level I is log2 NI where NI is the number of
classes at level I, and that the information compression be-
tween level I and level I+1 is log NI/NI+~ (Watanabe, 1972).
Hence the compressions in these two examples are the huge
amounts of about 33 bits and 66 bits respectively.

Define the conceptual knowledge present at a level to
be exactly the information compression required to form
the classes at that level, from the most elementary classes
(the raw data). An evaluation function which compresses
information just to the point at which performance begins
to suffer could be said to capture maximum conceptual
knowledge.

Now consider the intermediate, feature level (Fig. 3)
from the viewpoint of conceptual knowledge. The feature
space volume is about 2 l2 for the above case with the fifteen
puzzle (Rendell, 1981) and approximately 221 with checkers
(Samuel, 1963). This volume is the number of classes at the
feature level. Computing the information compression at all
three levels, we find that for each of these two examples,
about 80% of the maximum conceptual knowledge is cap-
tured in the middle (feature) level, while the remaining 20%
is expressed in the evaluation function as a particular com-
bination of features. Most of the knowledge is contained in
the features. This explains why composition of the heuristic
from features (even allowing feature interaction) is not very
impressive from the point of view of full inductive capability
(since general learning should create the features themselves).
It also suggests the intervention of more levels between raw
data and typical high level features (Rendell, in preparation;
Watanabe, 1972) has found that uniform reduction is most
effective.) Conceptual knowledge implies not only informa-
tion compression, but also rational ordering. As indicated
in Fig. 3, an exhaustive listing of measurement vectors has
completely haphazard utility values (i.e. the utility surface
in measurement space is extremely irregular). Features begin
to impose regularity; an ordering based on feature values
groups elements from the low level table into locally uniform
utility categories (i.e. features are surjections-their range
is smaller than their domain, and the utility surface in fea-
ture space is fairly smooth; consider for example the two
illustrative features for the fifteen puzzle). Finally, the ul-
timate evaluation function merges the features to construct a
meaningful global arrangement of the smaller utility clusters.

Equivalently, conceptual knowledge implies conceptu-
alization.Features represent rational components of concepts.
The evaluation function codes complete concepts. Each con-
cept has a worth. Features associate partially formed con-

THE AI MAGAZINE Winter, 1983 23

cepts with (here numerical) values. The evaluation function
essentially pairs each full concept or antecedent rule r, with
its consequent utility u (Fig. 3). Meaningful classification,
rational ordering, and concept attainment are interrelated.

An Important Knowledge Structure

This suggests a knowledge structure (T, u) for pairing
concepts (full or partial) with their utilities. This proposed
structure, which is different from the data, the features, and
the ultimate evaluation function, can be used for conceptual
development. Fig. 5 shows a straightforward choice, a par-
tition of the feature space in question, where each region is
a (hyper)rectangle T aligned with the axes, along with its
associated utility u. Such a rectangle is also a concept repre-
senting a conjunction of feature ranges.’ (This is for ordered

feature values; a different treatment is required when feature
values are unordered sets.)

A region set (r, u), has been used successfully in a prob-
abilistic learning system (PLS - Rendell, 1981, 1983a, 1983b),
where the the utility u is a goal oriented quantity, the propor-
tion of nodes eventually participating in a solution to a state
space problem or win in a game. The utility thus predicts
likelihood of success in problems yet to be encountered, as
a function of feature values (the utility is thus a conditional
probability (Rendell, 1983a; and c.f. Nau, 1983). With a
discrete mode of evaluation, if (T, u) is a region of the cur-
rent set and if the concept r is satisfied by a configuration A

‘Since general class membership (i.e a utility category U) can be
entailed by a set of conjunctions of feature ranges (by a set of rectangles
r), this is equivalent to a disjunction of logical formulas in conjunctive
normal form implying u (Nilsson, 1981); and thus fully general

800

12 4 16 64 250 1000

T L

- 12c

- 100

- 80

- 60

Discretizing an evaluation function. When utility values are forced into discrete categories by arbitrary rounding, the function
becomes a classifier. Depending on the number of categories demanded N, the performance may be unaffected or it may
change. D is the average number of states expanded before solution (circles) and L is the average solution length (triangles),
for a random sample of 32 fifteen puzzles. Unlike D, L improves with smaller N since the heuristic is imperfect and lower N
means more nearly breadth-first search.

Figure 4.

24 THE AI MAGAZINE Winter, 1983

A i simple region set, a partition of feature space. Shown are rectangles and their associated utilities (inside). A region is a

3 0

l ool
.Oool

16

means of expressing a concept and its worth; it is equivalent to a set of statements in the first order predicate calculus with
the concept as precondition and the utility as consequent.

Figure 5.

being assessed (i.e. if A maps into T), then A has the utility u.
With smoothed evaluation, a curve fitting technique general-
izes from the regions to generate a parameterized evaluation
function H = expb.f. (It is this heuristic that was made
artificially discrete for Fig. 4.)

In a PLS, sets of these regions gradually accumulate
knowledge, revising estimates u and refining feature space
volumes (concepts) r into units just adequate to express
known relationships. The result is an effective economy,
a distillation of experience. In one sense, the region set is
a refinement of Samuel’s (1967) signature tables which did
not alter data categories automatically. The novelty of a
PLS is that it computes statistics measuring solution density
in feature space, and uses these data to guide knowledge
refinement. Although it is data driven, a PLS is insensitive
to noise since it is stochastic (Samuel, 1963, 1967) which
are different but also statistical). Most concept formation
systems have difficulty with incorrect data. A PLS is quite
natural; Bruner et. al. (Bruner, 1956) emphasized the human
use of probabilities, features, and goal orientation.

Some problems appear simpler in a PLS (Rendell, in
preparation). For example, when the method is extended to
games, the horizon effect can be absorbed in the statistics,
as environments change during incremental learning.2

The region set is potentially useful in many domains;
whenever, in fact, the worth of something is observable and
contingent on a concept. For example an expert system could
use the same organization, perhaps with one region set for

2The horizon effect is the misleading information resulting when search
is prematurely cut off in the middle of, say, a sacrifice (Berliner, 1973)
In a unified method for state space problems and games using the region
set statistical approach, there are two general ways of assigning credit
to nodes: backed-up values can be either discrete (on a solution path
or not in a problem; win/lose/draw in a game), or else continuous, the
result of applying an existing heuristic to the tip nodes (Rendell, in
preparation). This is often mentioned with minimax but here learning
can occur using either of these methods exclusively With the former,
training instances are initially easy problems or end games; with the
latter method, some initial evaluation function is given, then improved
In either case the ability of the solver or player is bootstrapped using
statistical results of experience and natural goal orientation (Rendell,
1983; Rendell, in preparation)

THE AI MAGAZINE Winter, 1983 25

each production rule (or for each structured arrangement
of them). Then conditions for firing become probabilistic,
and easy to learn and modify. (Compare Michdlski’s (1983)
internal disjunction.) This knowledge structure, the region
set, is of wider use. When the features are replaced by
elementary measurements, it becomes a good starting point
for inductive inference of features (Rendell, in preparation).

One observation about typical region sets relates to con-
ceptual knowledge: they often have fewer members than the
effective number of concepts at the heuristic level; when the
evaluation function is inferred information is created, accord-
ing to the definition of Section 3. This is another statement
of the fact that induction occurs (Watanabe, 1969).

To summarize: Regions express utility-concept relation-
ships fully and provide a framework for condensation of
experience by collecting probabilities stochastically. The
statistical use of observations has several desirable conse-
quences. Error is absorbed, experience can be updated and
concepts can be precisely refined according to current data.
Another advantage is efficiency, discussed below.

Efficiency in Knowledge Acquisition

As pointed out in a previous section, learning systems
that allow the programmer to define the features are already
given, a priori, about 80% of the total conceptual knowledge.
Let us first consider this 20% problem, the formation of an
evaluation function from its component features. Despite
this 80% advantage, creation of a good evaluation func-
tion is still difficult to mechanize with reasonable efficiency.
(although many approaches have succeeded, e.g. Rendell,
1983a; Samuel, 1963, 1967).

Instead of a learning system, some traditional optimiza-
tion method can be used to find the best choice of weight
vector b for feature vector f in the evaluation function H =
exp b.f. In state space problem solving, a likely choice would
be to minimize the number of nodes developed D (this is
an objective function). Since the variances in D are typi-
cally high (even when test problems are multiple), a statis-
tical technique would be chosen, such as fitting second de-
gree polynomials in the weight space (higher dimensional
parabolas, with D as the dependent variable). This response
curve fitting, though, is very expensive. The value of D
for typical weight vectors is too high for computational
feasibility. Even if the location of the optimal b is already
known approximately, the process is inefficient. Experiments
have shown the increased efficiency and reliability of a more
informed scheme, the learning system PLSl (Rendell 1981,
1983a). Intuitively it is clear why this is so: the optimiza-
tion technique obtains just a single number (D) and disposes
of everything else. In contrast, a useful learning system ex-
tracts much more information from search trees. In both
Samuel’s system (1963,1967) and PLSl, every node devel-
oped contributes to the assessment of every feature. This
is possible because information is available about the use-
fulness of a node. Nodes are mapped into feature space

where credit assignment to a node becomes credit assignment
to each individual feature. The summation of all contribu-
tions provides an informed general picture of feature-utility
relationships.

Similarly Quinlan (1983) shows the computational ad-
vantage of a feature classification and information theory
approach to search, compared with minimax; his ID3 system
makes use of individual nodes in the judgment of utility by
features during evaluation. See also Pearl’s suggestion of a
probabilistic approach (Pearl, 1982).

Good use of information is the key to success in heuris-
tic formation. Consider again the utility class discussion. At
the level of the raw data, a table of utilities can theoreti-
cally be constructed for every individual state. But operat-
ing solely with this great detail, a rote learning system would
never gather much knowledge in practice. Furthermore, pat-
terns among table entries would never be discovered. An
ability to assign many states to a single, meaningful class is
of double importance. First, during evaluation, states which
have never been encountered can be judged since they are
‘similar to’ other members of the class. Secondly, during
learning, data can support each other and so a greater as-
surance is possible of the utility values ascribed to each con-
cept.

This mutual data support is straightforward when fea-
tures are already given. Relationships between dependent
variable (utility) and independent variables (here the fea-
tures) are smooth; permitting curve fitting which allows both
interpolation during evaluation and mutual support during
learning. Mutual data support is more difficult with elemen-
tary measurements, but perhaps this same principle can still
be applied (Rendell, in preparation).

Conclusions

This article has attempted to continue synthesis of some
principles in knowledge use, acquisition and learning. A
definition of conceptual knowledge has been given in a
limited domain. Relationships have been expressed between
evaluation functions of heuristic search, on the one hand, and
planning, classification, knowledge acquisition, and efficiency
on the other. An evaluation function estimates the utility
class u into which a node should be placed; the basis for
the decision is the satisfaction of a concept r. The forma-
tion of such concepts is natural and powerful when they are
represented as volumes in feature space and probabilistic
measures of the utility are incorporated. First, the informa-
tion gathering process creates implicit plans as a side effect.
Secondly, observation of probabilities provides a straightfor-
ward method both for this data collection and for its use.
The statistical approach lowers susceptibility to error, and
allows appropriate revision of utility and refinement of con-
cepts. Finally, the process is efficient because of good use of
data encountered. This abstraction of knowledge structure
and statistical method for generalization result in a capable
system, and seemingly wide application.

26 THE AI MAGAZINE Winter, 1983

Domain-specific conceptual knowledge can be acquired
autonomously from lower level information, and perhaps ul-
timately from elementary data.

References

Berliner, H. (1973) Some necessary conditions for a master
chess program IJCAI 3, 77-85.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956) A
Study of Thinkzng. NY: John Wiley & Sons.

Buchanan, B. G., Johnson, C. R., Mitchell, T. M., & Smith,
R.G.(1978)M d 1 fl o e s o earning systems. in Belzer, J. (Ed.)
Encyclopedia of Computer Sczence and Technology 11.

Dietterich, T. G., London, B., Clarkson,K., & Dromey, G.
(1982) Learning and inductive inference. STAN-CS-82-
913, Stanford University, also in Cohen, P. R., & Feigen-
baum, E. A. (Eds.) The Handbook of Artzficial Intelligence,
Chapter XIV, Los Altos: Wm. Kaufmann.

Doran, J. & Michie, D. (1966) Experiments with the graph-
traverser program, Proceedings of the Royal Society, A,
294 235-259.

Feldman, J. A. & Yakimovsky, Y. (1974) Decision theory and
artificial intelligence: I. A semantics-based region analizer,
Artificial Intelligence 5, 349-371.

Hart, P., Nilsson, N. J., & Raphael, B. (1968) A formal basis
for the heuristic determination of minimum cost paths,
IEEE Trans. Sys. Sci. and Cybernetics SSC-4, 100-107.

Michalski, R. S. (1983) A theory and methodology of in-
ductive learning, in Michalski, R. S. et al (Ed.), Machine
Learning: An Artificial Intelligence Approach. Palo Alto:
Tioga Publishing, 83-134.

Nau, D. S. (1983) Artificial Intellzgence 21, 221-244.
Nilsson, N. J. (1971) Problem Solving Methods in Artificial

Intelligence. New York: McGraw-Hill.
Pearl, J. (1982) On the nature of pathology in game search-

ing, UCLA-ENG-CSL-8217, School of Engineering and Ap-
plied Science, University of California.

Proceedings of the International Machine Learning Workshop.
Allerton House, University if Illinois at Urbana-Champaign,
June 22-24.

Pylyshyn, Z. W. (1982) Literature from cognitive psychology,
Artificial Intelligence 19, 251-255.

Quinlan, J. R. (1983) Learning efficient classification pro-
cedures and their application to chess end games. in
Michalski, R. S. et al (Eds.), Machine Learning: An
Artificial Intelligence Approach. Palo Alto: Tioga Pub-
lishing, 463-482

Rendell, L. A. (1981) An adaptive plan for state-space prob-
lems, Dept of Computer Science CS-81-13, (PhD thesis),
University of Waterloo.

Rendell, L. A. (1983a) A new basis for state-space learning
systems and a successful implementation. Artzficial Intel-
ligence 21.

Rendell, L. A. (1983b) A learning system which accom-
modates feature interactions, IJCAI 8, 469-472.

Rendell, L. A. (in preparation). A uniform learning system
for problems and games.

Rendell, L. A. (in preparation). Progress in induction of
features for problems and games.

Samuel, A. L. (1963) Some studies in machine learning using
the game of checkers. in Feigenbaum, E. A. & Feldman, J.
(Eds.), Computers and Thought. New York: McGraw-Hill,
71-105.

Samuel, A. L. (1967) S ome studies in machine learning using
the game of checkers II-recent progress, IBM J. Res. and
Develop. 11 601-617.

Slagle, J. R. & Bursky, P. (1968) Experiments with a mul-
tipurpose, theorem-provang heuristac program. JACM 15,
85-99.

Slagle, J. R. & Farrel, C. (1971) Experiments in automatic
learning for a multipurpose heurstic program, C. ACM 14,
91-99.

Watanabe, S. (1969) Knowing and Guessing: A Formal and
Quantitative Study NY: John Wiley & Sons.

Watanabe, S. (1972) Pattern recognition as information
compression, in Watanabe, S. (Ed.), Frontiers of Pattern
Recognition. Academic Press., 561-567.

THE AI MAGAZINE Winter, 1983 27

