
Techniques and Methodology - 

Learning from Solution Paths: 
An Approach to the 

Credit Assignment Problem 

Derek Sleeman 

Department of Computer Studies 
Unaversity of Leeds 

Leeds LX2 9JT 
Unated Kangdom 

Pat Langley 

The RoboGcs Institute 
Carnegie-Mellon Unzversity 

Pattsburgh, Pennsylvanaa 15213 

Tom M. Mitchell 

Department of Computer Science 
Rutgers Universaty 

New Brunswick, New Jersey 08903 

Abstract 

In this article we discuss a method for learning useful conditions on the 
application of operators during heuristic search Since learning is not 
attempted until a complete solution path has been found for a prob- 
lem, credit for correct moves and blame for incorrect moves is easily as- 
signed We review four learning systems that have incorporated similar 
techniques to learn in the domains of algebra, symbolic integration, 
and puzzle-solving We conclude that the basic approach of learning 
from solution paths can be applied t,o any situation in which problems 
can be solved by sequential search Finally, we examine some potential 
difficulties that may arise in more complex domains, and suggest some 
possible extensions for dealing with them. 

PEOPLE LEARN FROM EXPERIENCE, and for the past 25 
years, Artificial Intelligence researchers have been attempt- 
ing to replicate this process. In t,his article we focus on learn- 
ing in domains where search is involved. Furthermore, we 
will restrict our attention t,o cases in which the legal operators 
for a task are known, and the learning task is to determine 
the conditions under which those operators can be usefully 
applied. Once such a set of heuristically useful conditions 
has been discovered, search will be directed down profitable 

paths, and thus greatly reduced. 
In the following section we will examine four systems 

that learn useful conditions on operators by examining solu- 
tion paths. We shall see that this process can be divided into 
three components. Firstly, one must be able to find one or 
more solution paths to the goal state. Secondly, one must 
be able to assign credit when a correct operator is used and 
assign blame when an incorrect operator is selected. Thirdly, 
one must, be able to modify the responsible operators to rein- 
force positive behavior and to prevent errors in the future. 
After describing the learning systems, we explore their com- 
mon features and consider extensions of the basic approach 
to more complex d0mains.l 

We would like to thank Jaime Carbonell and Hans Berliner for helpful 
comments on an earlier version of this article. This article was written 
during Derek Sleeman’s visit to Carnegie-Mellon University, under sup- 
port of the Sloan Foundation Tom Mitchell was supported by Grant 
MCS80-08889 from the National Science Foundation, while Pat Langley 
was support,ed by NSF Grant SPI-7918266. 

Recent Retiearch on Strategy Learning 

The past few years have seen the emergence of a new 
approach to learning strategies from sample solutions and by 
experimentation. Below we summarize four research efforts 
that have remarkable overlap, despit,e t,he fact, that they 
occurred in relative isolation. Although the first workers in 
this area did not seem to realize the full implication of their 
techniques, the basic ideas were nevertheless present. After 

‘Readers interested in the wider aspects of learning are referred to 
Doyle and London (1980) Mitchell, Carbonell, and Michalski (1981), 
and Michalski, Carbonell, and Mitchell (in press) 

48 THE AI MAGAZINE Spring 1982 

AI Magazine Volume 3 Number 2 (1982) (© AAAI)



discussing each of the systems individually, we attempt to 
formulate a general method for learning from solution paths 
in terms of their commonalities. 

Brazdil’s ELM Brazdil (1978) has discussed ELM, 
a PROLOG program that learns from sample solutions in 
the domain of simple algebra and arithmetic. The system 
starts with a set of operators for associativity, for adding 
the same number to both sides, and so forth. It is then 
given as input a sequence of practice problems, along with 
their solutions For each problem, ELM goes through each 
step of the solution, comparing the step it would have made 
with the corresponding step of the known solution Since 
ELM has no priority ordering for its operators at the out- 
set, it tries all operators applicable to the current problem 
state. Only one operator application agrees with the solu- 
tion trace, so the corresponding rule is given priority over its 
competitors; in the future, this rule is selected in preference 
to the others In this way, ELM establishes a partial ordering 
on its set of operators. Difficulties arise when one problem 
suggests a certain ordering, and another problem suggests a 
different one. In such cases: Brazdil’s system creates more 
constrained versions of the competing operators with addi- 
tional conditions on their application. The new conditions 
are selected by finding predicates that were true when the 
operator should have been applied, but false when another 
operator should have been preferred. The new operators are 
added to the priority ordering above the rules from which 
they were generated 

Thus, ELM addresses two of the issues identified ear- 
lier, since it assigns credit and blame to particular opera&s 
and since it modifies the condition parts of the rules ap- 
propriately. However, Brazdil’s system does not initially at- 
tempt to find its own solution paths. 

Neves’ ALEX. Neves (1978) has described ALEX, 
another system that learns algebra procedures from ex- 
amples. The program is stated as an adaptive production 
system, and learning is accomplished through the addition 
of new condition-action rules. ALEX creates two types of 
productions. The first of these recognizes familiar differences 
between successive states in a problem. The second type of 
rule is responsible for proposing useful operators to apply, in 
order to transform one state into another. Although ALEX’s 
standard learning mode expects solutions in which all the 
steps are explicitly given, the system has the ability to fall 
back on means-ends analysis to fill in missing steps in a 
sample problem. Once the program has successfully solved 
a problem with this technique, it processes the completed 
solution as if it had been provided by the user. 

Thus, Neves’ system is able to discover its own solution 
paths and learn operators, but avoids the credit assignment 
problem and the revzszon of faulty operators. In contrast, 
the next two systems we will consider have adequately dealt 
with all three issues. 

Mitchell’s LEX. Mitchell, Utgoff, Nudel, and Banerji 
(1981) have described LEX: a computer program that ac- 
quires problem solving heuristics in the domain of symbolic 

integration. This system starts with legal operators for 
transforming mathematical expressions, and learns heuristics 
(i.e., conditions under which operators should be applied) in 
three steps: 

using heuristics that it has formulated previously in 
order to solve practice problems. 

analyzing the steps it performed in solving the prob- 
lem to isolate positive and negative examples of useful 
search steps 

proposing and refining domain-specific heuristics to 
improve its performance on subsequent problems 

The credit assignment method used in this system isolates 
negative instances as search steps that lead from some state 
on the solution path to some state off the solution path. 
However, before labeling such steps as negative instances, 
LEX selectively expands part of the search to determine 
whether an alternative solution could be derived along some 
path involving the “deviant” search step. 

In formulating heuristics, LEX maintains a version space 
for each proposed heuristic; that is, it maintains a range 
of alternative statements of the heuristic that are plausible 
given the observed data. As new positive and negative ex- 
amples are encountered, the version space of that heuristic is 
refined using the Candidate Elimination Algorithm (Mitchell, 
1978). The representation of partially formulated heuristics 
in terms of their version space has been found to be im- 
portant for solving subsequent practice problems. One ad- 
vantage of this representation is that the problem solver can 
determine the relevance of a heuristic in a particular situa- 
tion by determining what proportion of the alternative ver- 
sions of the heuristic match the situation. Thus, the problem 
solver can make use of heuristics that are still under revision, 
while minimizing the likelihood of being misled by an incor- 
rect heuristic. 

Langley’s SAGE. Langley (1981) has described SAGE, 
a strategy learning program stated as an adaptive production 
system and implemented in the PRISM formalism (Langley 
and Neches, 1981). Like Brazdil’s system, SAGE begins with 
a set of overly general operators for solving a problem. And 
like Neves’ program, SAGE attempts to find its own solution 
path using depth-first search. Having found a solution path, 
the system tries the same problem a second time. When 
an operator is applied incorrectly, SAGE compares the most 
recent correct application of that operator to the current 
faulty one in search of differences. 

Differences consist of propositions which were present in 
memory during one application but not during the other. 
These may relate to the current problem state, to previous 
moves that have been made, or to a combination of both 
types of information. Such a difference can be composed of 
a single proposition or a conjunction of propositions If a set 
of propositions are found to have been present during the 
correct application but not during the errorful one, these 
facts are included as additional conditions on a new version 
of the faulty production, much as in Brazdil’s system. If the 

THE AI MAGAZINE Spring 1982 49 



Cl 

Dl D2 03 

Figure 1. A sample search tree. 

B3 

relevant elements were present during the incorrect applica- 
tion, they are included as a set of negated conditions on the 
variant rule (i.e., the new rule would be applicable only if 
the new facts were not all true). All possible differences are 
found, and the resulting variant rules are constructed. The 
initial rule is retained, and it can lead to additional errors in 
the future. 

Whenever SAGE regenerates an existing rule, the strength 
of that rule is increased. This means that since useful rules 
tend to be learned more often than spurious ones, they come 
to be preferred. Eventually, the strength of the correct 
variants exceed the strength of the original operators. If a 
variant production is still overly general, it leads to its own 
errors and other rules are created with still more conditions. 
However, SAGE eventually arrives at a set of rules that allow 
it to solve the current problem with no errors. When this 
occurs, the system is satisfied that it has learned enough and 
asks for a new problem for which its refined operators may 
or may not be useful. SAGE has discovered useful operators 
in the domains of simple algebra, the slide-jump puzzle, and 
seriation. 

An overview of the approach. Taken together, 
the above systems suggest an approach to strategy learn- 
ing that is both general and powerful. Starting with a 
set of legal operators for solving a class of problems, one 
can solve sample tasks using weak, general methods such 
as heuristic search and means-ends analysis.2 At this point, 
there are several possible strategies for learning useful con- 
ditions. One of these, followed by Langley’s system, may 
be labeled “optimistic” or “uncautious.” Another, followed 
by Mitchell’s program, may be described as “cautious.” In 
both cases the search tree is examined to determine correct 
applications of operators which are treated as positive in- 
stances, while ancorrect applications are treated as negative 
instances that should be avoided in the future. 

‘This analysis assumes that the cost of a path is given by its length. 
This analysis can be easily extended to accommodate variable-cost 
paths. 

50 THE AI MAGAZINE Spring 1982 

Given a partial search tree, these two strategies would, in 
general, provide a different set of training instances. For ex- 
ample, consider the search tree presented in Figure 1. Given 
that one has discovered that the node D2 is the goal and that 
the path A Bl C3 D2 is a solution path, then the optimistic 
algorithm would infer that the particular instantiations of: 

opl at A, op6 at Bl, and op8 at C3 are positive instances; 

and the particular instantiations of: 

op2 at A, op3 at A, op4 at Bl, op5 at Bl, and op7 at 
C3, and op9 at C3 are negatzve instances. 

In contrast, the cautious algorithm would use the same set of 
positive instances, but it would only decide on the negative 
set of instances after having further investigated the cost 
associated with the relevant sub-trees. 

Two additional mechanisms are useful. Firstly, as the 
data handled by the the learning mechanisms is inherently 
errorful, it is essential (particularly for the less cautious al- 
gorithm) that the algorithms employed should be able to 
cope with noisy data. Both Mitchell’s and Langley’s systems 
do have some ability to deal with errorful data. Secondly, 
the algorithm could attempt to extend parts of the solution 
tree in order to provide additional training instances. For 
example, for the search tree of Figure 1, LEX would ask the 
problem solver to try to “solve” node B3. The problem sol- 
ver is given a bound on the search effort to be spent on this 
task, which is based upon the effort originally expended to 
find the currently known solution. 

Let us for a moment consider what the situation would 
be if one had access to the complete search tree. Such a situa- 
tion would have three advantages. Firstly, it would provide 
the learning algorithm with many more positive and negative 
instances. (In these cases the “optimistic” and the “cautious” 
algorithms would infer the same training sets.) Secondly, 
the data would be less noisy (this particularly affects the 
“optimistic” strategy). Thirdly, it would then be possible 
to learn with respect to the optimum path(s), as opposed to 
a posszble path. (Indeed, it might be sensible to “initialize” 



the learning process by choosing a simple, yet characteristic, 
problem which could be explored exhaustively.) 

Although, the particular learning mechanisms that have 
been employed are interesting in themselves, we will not focus 
on them here. The central insight that makes such learning 
possible is that once a solution path has been found, the 
credit assignment problem becomes tractable, and one can 
then infer a set of positive and negative instances to drive the 
learning process. The resulting operators will incorporate 
additional domain-specific knowledge to direct future search 
in profitable directions. This notion is deceptively simple, 
but it provides the basis for a general approach to strategy 
learning. (Note that many earlier approaches tried to decide 
what was wrong with a path which led to backtracking before 
a complete solution path had been discovered.) 

Generality of the Approach 

The approach to learning proposed in the previous sec- 
tion would seem to be applicable to any domain in which 
problems can be solved by the (sequential) application of 
operators.3 Fortunately, much of Artificial Intelligence re- 
search has been devoted to casting challenging tasks in this 
framework (Newell and Simon, 1976). Examples include 
solving simple puzzles such as the Tower of Hanoi, simplify- 
ing expressions in algebra and calculus, inducing rules from 
examples, proving theorems in logic and geometry, and play- 
ing two-person games like checkers and chess. We would 
like to emphasize that the proposed method of learning from 
solution paths can be applied to any of these domains, and 
that it provides a general approach to learning that deserves 
more attention in the future. 

However, we would not claim that the method is capable 
of learning all there is to learn in any domain. The proposed 
technique lets one discover heuristically useful conditions 
on the application of legal operators, but one can certainly 
t,hink of other interesting dimensions of the learning process 
that we have not addressed. For example, Anzai (1978) has 
examined the learning of subgoals in the Tower of Hanoi 
task. Neches (1981) has modeled the creation of new and 
more efficient operators in the arithmetic domain. And Iba 
(personal communication) has considered the discovery of 
macro-operators in puzzle-solving tasks. Still, we feel that 
the determination of conditions has an important role to play 
in any field where search is involved. Having argued for the 
generality of the method, let us now turn to its potential 
limitations. 

Large search spaces. The methods described above 
emphasize the need to determine solution paths before credit 
assignment can be carried out effectively. However: some 

3Waterman (1970) was one of the first to face the credit assignment 
problem, which he encountered in the context of his program for learn- 
ing Poker strategies For a more recent attack on the credit assignment 
problem within game-playing programs, see Berliner (1974) and Wilkins 
(1980) 

search spaces may be so large that weak methods are 
insufficient to produce any solution paths. Let us consider 
what can still be accomplished in such situations. In the 
case where the search space is large, it may be necessary 
to “focus” the problem solver on simpler problems, or at 
least ones which have fewer steps in their solutions, and to 
evolve appropriate heuristics for such problems before con- 
sidering more complex ones. Alternatively, the investigator 
could provide the learning mechanism with a solution trace 
for the “unsolvable” problems, as Brazdil did for his learn- 
ing system. A less extreme form of this approach would be 
to provide subgoals along the solution path, so the complex 
problems could be broken down into solvable sub-problems. 

Poor moves and catastrophic moves. So far, we 
have distinguished only between solution paths and failure 
paths. However, in some circumstances it may be useful to 
distinguish between poor (yet failure) paths and catastrophic 
failures. For example, in chess it might be useful to distin- 
guish between moves which led to the loss of a pawn and 
ones that led to the loss of a queen. If such a distinction 
is desirable, a further set of heuristics might be created by 
providing an algorithm that treats “poor” nodes as “good” 
and catastrophic nodes as “bad.” Indeed, if necessary a 
whole range of such discriminations could be created using 
the mechanisms outlined here. 

Application to AND/OR trees. Another possible lim- 
itation of the approach relates to games involving AND/OR 
trees. As in the case for OR trees, a complete expansion 
of the search tree is necessary in order to assure completely 
reliable credit assignment. However, the same approaches 
used for approximating the search for OR trees can be ap- 
plied here. 

In such games, the actions of the opponents may be 
unpredictable. In practice then, one would be learning to 
improve the heuristics for operators with respect to a “black 
box” system whose strategy would not be effected by the 
“refined” heuristics being learned. If, for some reason, it was 
decided that the “black-box opponent” should have access 
to the revised rules, then the solution path might change as 
a result of an earlier refinement to a rule-heuristic. Thus, 
one would need to repeat the learning cycle until no further 
changes in the rule conditions and the solution path were 
noted. 

Conclusions 

In this article we have discussed a method for learning 
from solution paths that has been used to revise the con- 
ditions on operators from a variety of domains, including 
algebra, symbolic integration, and puzzle-solving. This ap- 
proach provides an elegant yet powerful solution to the credit 
assignment problem, and seems applicable to any problem 
that can be solved with sequential search. Of course, the 
discovery of conditions is not the only aspect of learning in 
such situations, but it does appear to be an important com- 
ponent of the overall process And although difficulties arise 

THE AI MAGAZINE Spring 1982 51 



when one attempts to extend this method to more complex 
domains, variations on the basic method show promise of 
handling these difficulties. In conclusion, we feel that the 
determination of useful conditions from solution paths is 
an important learning technique with considerable potential, 
and we hope that this technique will be increasingly used in 
constructing intelligent systems that learn from experience. 

References 

Anzai, Y. (1978) Learning strategies by computer. Proceedings of 
the Second National Conference of the Canadian Society for Com- 
putational Studies of Intelligence, 181-190. 

Berliner, H (1974) Chess as problem solving: The development of 
a tactics analyzer Ph D. dissertation, Computer Science Dept : 
Carnegie-Mellon University 

Brazdil, P. (1978) Experimental learning model. Proceedings of the 
AISB Conference, 46-50. 

Doyle, J., & London, P (1980) A selected descriptor-indexed bib- 
liography to the literature on belief revision SIGART Newsletter 
71:7-23. 

Langley, P (1981) Strategy acquisition governed by experimen- 
tation. CIP Working Paper No. 431, Dept. of Psychology, 
Carnegie-Mellon University. 

Langley, P , & Neches, R (1981) PRISM User’s Manual Tech. 
Rep , Computer Science Dept , Carnegie-Mellon University 

Michalski, R., Carbonell, J. G , &Mitchell, T M (Eds ) (in press) 
Machine learning Palo Alto, Calif : Tioga 

Mitchell, T M (1978) Version spaces: An approach to concept 
learning Rep. No STAN-CS-78-711, Computer Science Dept , 
Stanford University. (Doctoral dissertation ) 

Mitchell, T M., Carbonell, J. G , & Michalski, R. (1981) Special 
section on machine learning. SIGART Newsletter 76:25-64. 

Mitchell, T. M, Utgoff, P. E.: Nudel, B., & Banerji, R. (1981) 
Learning problem-solving heuristics through practice. IJCAI 7, 
127-134 

Neches, R. (1981) Models of heuristic procedure modification 
Ph D. dissertation, Dept. of Psychology, Carnegie-Mellon Uni- 
versity. 

Neves, D. M. (1978) A computer program that learns algebraic 
procedures by examining examples and working problems in a 
textbook Proceedings of the Second National Conference of the 
Canadian Society for Computational Studies of Intellzgence, 191- 
195. 

Newell, A., & Simon, H. A (1976) Computer science as empiri- 
cal inquiry: Symbols and search Communications of the ACM 
19:113-126. 

Waterman, D. A. (1970) Generalization learning techniques for 
automating the learning of heuristics. Artificial Intelligence 
1:121-170. 

Wilkins, D E. (1980) Causality analysis in chess. Proceedings of 
the Third National Conference of the Canadian Society for Computa- 
tional Studies of Intelligence, 212-216. 

52 THE AI MAGAZINE Spring 1982 




