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n Aircraft design is an iterative process
of creating a design concept from a set of
requirements. Conceptual design is an
early phase in the process, during which
preliminary decisions and trade studies
are made from a set of requirements
related to mission objective and costs.
Although much attention has been paid
to applying autonomy technologies to
robotic systems, including air vehicles,
there has been little attention paid
to incorporating autonomy as part of
the conceptual design process. Conse-
quently, designing for autonomy tends
to be retrofitted to a vehicle that has
already gone through a complete design
process rather than as part of the initial
process. This derivative approach to
designing autonomous systems is sub-
optimal, and there is evidence that this
has hindered the acceptance of auton-
omy technologies. This article proposes
an approach to conceptual design for
aircraft that incorporates autonomy
into the conceptual design process. To
illustrate the principles introduced, we
consider the example of configuring an
autonomous small unmanned aerial
vehicle for searching and tracking a
target of interest.

Aircraft design is the iterative process of creating a de-
tailed design concept from a set of requirements. Tra-
ditionally, conceptual design is an early phase in the

process, duringwhich preliminary decisions and trade studies
aremade about vehicle aerodynamics, structures, propulsion,
stability, and control from a set of requirements related to
mission and costs.
Recent advances in autonomy for complex robotic systems

pose potentially significant changes in the design process.
Machine autonomy is realized through hardware and AI
software for sensing, communication, control, andnavigation.
Autonomy has been proposed for a wide range of robotic
systems, from Mars rovers (Wettergreen et al. 2014; Jonsson,
Morris, and Pedersen 2007) to self-driving cars (Bayouth,
Nourbakhsh, and Thorpe 1997).

Copyright © 2019, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602 SUMMER 2019 3

Article



With the advent of unmanned aerial vehicles
(UAVs), nontraditional aspects of design such as size,
weight, and power requirements for sensing systems
have been considered (Jerath and Langelaan 2016).
Themovement toward autonomousUAVs adds further
considerations of processing and memory requirements
of onboard computers. To date, the ramifications of
autonomy for design have not been fully integrated into
practice. For example, in the most recent edition of the
standard textbook on aircraft design (Raymer 2012), no
mention of design for autonomy is to be found. As a
consequence, autonomy tends to be something that is
added to a fully designed system. Retrofitting something
as potentially all-encompassing as autonomy into an
existing design is clearly suboptimal. In addition,
evidence suggests that early attempts at integration
of autonomy into complex systems often failed to be
accepted because autonomy was cobbled together as
an afterthought in the design of the system (Murphy
and Shields 2012). Instead, autonomy must be part
of a rigorous conceptual design process as a condi-
tion for acceptance.
Adding considerations of autonomy to conceptual

design will also address the so-called substitution
myth (Christoffersen and Woods 2002), that is, the
assumption that machine autonomy can be inte-
grated into a system by a simple act of substitution,
replacing manual operation with automation in a
fully designed system. As noted by Johnson et al.
(2013), substitution incurs a negative impact in the
overall coordination of human and machine. Such
coordination requirements, as we discuss below, are
defined during conceptual design.
This article draws on previous work in the cogni-

tive components of autonomy [for example, that of
Ingrand and Ghallab (2014)], on architectures for
autonomy [for example, that of Kortenkamp and
Simmons (2008)], and on so-called hybrid human-
machine autonomy [for example, that of Johnson
et al. (2013)]. This article expands previous work by
investigating traditional principles of conceptual de-
sign for aeronautics and shows in detail howmachine
autonomy can be integrated into the design process.
Then we expand the scope of previous efforts by in-
troducing a distinction between vehicle autonomy
and operational autonomy, arguing for the primacy of
the latter notion in any discussions of design for
autonomy. Although the focus here is on aeronautical
vehicles, the overall results can be applied to virtually
any kind of robotic platform for which autonomy
technology can be applied.
In the next section we review traditional concepts

in design for aerial vehicles, with a focus on the
conceptual design phase. Then we review the archi-
tectural components of autonomy.
In the section on conceptual design for auton-

omy, we propose a set of principles for integrating
autonomy technology into conceptual design, then
follow with a case study that illustrates the ideas
presented with a conceptual design for a small UAV
(sUAV) search and track mission.

A Review of Conceptual
Design for Aeronautics

This section draws extensively on a standard and popular
textbook on design for aeronautics (Raymer 2012). Air-
craft design is divided into three phases: conceptual
design, preliminary design, and detailed design. In
conceptual design, requirements that drive the design are
transformed into a wide range of aircraft configuration
concepts, and trade studies aremade tofind those that are
viable. In preliminary design, one configuration is cho-
sen, and a more detailed design of major components is
made, in addition to cost assessments. Finally, in the
detailed design phase, the parts of the actual system and
the fabrication and tooling processes are designed.
This article focuses exclusively on the conceptual

design phase. The reason for this restriction is not
because design for autonomy does not factor impor-
tantly into the other phases. Rather, the restriction
limits the scope of the discussion to identifying
general principles for integrating autonomous sys-
tems into the conceptual design phase.
Aircraft conceptual design asks questions like the

following (Raymer 2012): (1) What requirements drive
the design? (2) What should the vehicle look like and
cost? (3) What trade-offs should be considered in de-
termining optimal designs? (4) What technologies
should be used (current or future state of the art)? (5) Do
these requirements produce a viable and salable aircraft?
Types of requirements for conceptual design include a

high-level definition of the purpose and operations of
the aircraft, including the time line for development and
the level of acceptable technological risk; mission- or
customer-centric requirements such as size, weight,
range, endurance, altitude, speed payload, and cost, and
other specific requirements like low observability;
equipment and technologies (including computer
hardware or software) required to carry out mission;
legal requirements for performance, design, and oper-
ations; and company-based best practices requirements.
The conceptual design effort typically begins with a

conceptual sketch, a rough drawing used to estimate
aerodynamics and weight requirements (a process
called sizing). The sketch is analyzed against the
mission requirements to determine feasibility of the
design, and optimization techniques are used to find
the cheapest or lightest aircraft that adhere to the
performance andmission requirements. The results of
the analysis and optimization provide inputs to a
revised design that more clearly determine size and
weight (and other) constraints on the aircraft. After
possibly many iterations, the final design sketch
passes to the preliminary design process for further
development.

Architectures for Autonomy
By (machine) autonomy, we mean a collection of
cognitive capabilities that combine to enable a system
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(sometimes referred to as an autonomous agent) that
exhibits deliberative behaviors (Ingrand and Ghallab
2014). More specifically, this means that at a specified
level of abstraction determined by system requirements,
the vehicle is able to behave with goals in mind.
Generally speaking, goal-based rationality requirements
can be classified along a spectrum from the purely re-
active (the system is able to respond in real time to avoid
hazards) to the purely deliberative (the system is able to
choose mission goals and perform actions that ac-
complish these goals). Between these extremes is a
collection of tactical capabilities that allow the system
to observe and act on theworld inways that contribute
to accomplishing goals or remaining safe.
Cognitive capabilities for autonomy include mission

and trajectory planning, observing events and features
of the world relevant to accomplishing goals, learning
and adapting to changes to the operational environ-
ment, and refining planned actions into triggers of
motor forces (Ingrand and Ghallab 2014). Autonomy
capabilities are implemented by hardware and software
that interface with a machine platform. Autonomy
software implements AI models and algorithms for
predicting, understanding, and acting on the world.

Autonomy Architectures
Conceptual design for autonomy requires discussion
of how the cognitive components of autonomy fit
together into an integrated system. In this discussion
we distinguish between a vehicle architecture and a
broader notion of an operational architecture. The
components of an operational architecture include
the vehicle components and organization but also
may include remote processors that reside on other
vehicles or a ground system, as well as the compo-
nents that enable human inputs to the system (figure
1). For aeronautical applications especially, vehicle
architectures derive from operational architectures,
and therefore the latter take precedence in design.
The primacy of operational architecture is evident

in any reasonable definition of classes of autonomy,
such as the one in the paper by Shladover (2016) for
self-driving automobiles. Even at the highest (level 5)
class of autonomy (the car behaves like a true chauf-
feur, “retain[ing] full vehicle control, need[ing] no
human backup and drive[ing] in all conditions”), the
human is still present and is controlling operations,
such as by setting navigation goals.
In the following, we distinguish among three is-

sues: defining the structure and style of an architec-
ture, determining the distribution of capabilities, and
designing for human-machine coordination.

Architecture Structure and Style
It has been often claimed that autonomous systems
consist of layers (Alami et al. 1998; Coste-Maniere and
Simmons 2000; Bayouth, Nourbakhsh, and Thorpe
1997). This means that high-level functionality can be
recursively broken down into functionally simpler
subsystems. Many architectures distinguish among
three tiers: a deliberative layer, an executive layer, and a

control layer (terms defining these layers may vary).
Figure 2 shows the placement of these generic layers, as
well as the hardware layer for the controlled vehicle. The
deliberative layer is responsible for mission planning,
including planning path trajectories and other actions.
It is also responsible for building andmaintaining high-
levelmodels of the world and the vehicle. The executive
layer acts as a bridge between the deliberative layer and
low-level control. Some of its capabilities include acti-
vating low-level behaviors, failure recognition, and
triggering replanning activities. Finally, the control layer
comprises the set of low-level behaviors and controllers
that directly interface with hardware.
The integration of autonomy components requires

design of the means by which components commu-
nicate with one another, sometimes referred to as the
architectural style. Examples of infrastructure for com-
munication are client-server and publish-subscribe. Re-
cently, more developers have been taking advantage of
the reliability, efficiency, and ease of use that externally
available communication packages such as the Robotic
Operating System (ROS) (Quigley et al. 2009) provide.

Distributing Cognitive Capabilities
Operational architectures are inherently distributed. We
look at two types of distributed operational architectures:
those that support the activities of a single agent and
those that support coordination of multiple agents. In
this section we are agnostic as to whether the capabilities
are automated or performedby ahuman. In thenext part
we discuss human-machine distributed capabilities.
The first kind of distribution is a spatial distribution

that can arise due to restrictions on the size, weight, or
operational constraints of the vehicle. For example, due
to size andweight restrictions of sUAVs, it is common to
assign more computationally intensive or memory-
intensive processing to a ground processor rather than
the vehicle. An important factor in this kind of distri-
bution of capabilities is the possible communication
overhead incurred from ground to vehicle, as well as its
effects on the responsiveness of the vehicle.
The second kind of distribution of capabilities arise

when it makes sense to have coordinated activity
among many agents to achieve mission goals. Some
missions require solutions that involve autonomous
agents operating as teams. In addition to the sensing,
navigation, and control of capabilities of individual
vehicles, additional sensing, communication, and
planning capabilities are required to enable coordina-
tion. We may also distinguish between the middleware
for coordination and algorithms for enabling co-
ordination, such as team formation and distributed path
planning. An example of the former is the use of a cloud-
sourced database management system to enable com-
munication of data and commands among networks of
sUAVs (Tyagi and Nanda 2016).

Human-Centered Autonomy
Operational architectures for autonomy are inher-
ently coordinated between human and machine. As

SUMMER 2019 5

Article



noted earlier, coordination activity is joint activity, in
the sense that what one agent does depends at least
partially on what others are doing. Joint human-
machine activity is relevant to the theme in this ar-
ticle because “in sophisticated human-agent systems,
the underlying interdependence of joint activity is the
critical design feature” (Johnson et al. 2013).
Joint activity poses new requirements for sensing,

planning, communication, and other cognitive
capabilities that are based on coordination to
manage the interdependencies among human and
machine.

Metrics for Autonomy
To evaluate and compare designs for autonomy
within the conceptual design process, it is necessary to
identify a set of quantifiable performance metrics.
First, autonomy is a set of capabilities for exhibiting
goal-directed behavior. Therefore, we define an effectiveness
metric,namely, the degree to which the system exhibits
goal-directed rationality at a required level of respon-
siveness. By responsiveness we simply mean that it
does not take too long to accomplish its goals.
The second metric often associated with autono-

mous systems is robustness: the system is effective in a
wide range of operating conditions. This does not
necessarily require the system to exhibit goal-directed
rationality on its own in all operating conditions; for
example, under certain conditions, if it simply requests
assistance from a human operator, that decision is
sufficient to exhibit robustness.

The final metric is safety. Within the range of be-
haviors derived from mission requirements, the ve-
hicle will not deliberately or accidentally harm itself,
humans, or its environment.
More metrics for autonomous system performance

can be proposed, but these three are sufficiently
comprehensive for us to confidently use them in the
following discussion.

Conceptual Design for Autonomy
In this sectionwe combine the ideas of the previous two
sections to provide a high-level description of the role of
autonomy in conceptual design. More specifically, we
focus on a design from a scratch problem, rather that
what Raymer (2012) called a derivative design prob-
lem, one in which an existing detailed aircraft is
modified to be autonomous. As the purpose of this
article is to incorporate considerations of autonomy at
the conceptual design phase, derivative design, al-
though potentially important to study in the context
of autonomy, is not an issue to be discussed here.
First, the high-level purpose of the mission gives

rise to cognitive capability requirements for a vehicle.
For example, consider a mission in which an sUAV is
required to find small fires within an abandoned build-
ing. A core requirement for this application is that the
vehicle can navigate in a small indoor space. Another
requirement is that the vehicle can sense in a cluttered,
smoke-filled area with no GPS. Constraints induced by

data

commands

data

commandscommands

data

commands

Figure 1. Schematic of an Operational Architecture.

Command/data loops within a system that integrates human decision making with vehicle autonomy.
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these requirements can be classified into must-have ca-
pabilities (for example, the vehicle must contain a sensor
that can detect fires) and can’t-have capabilities (for ex-
ample, a GPS and localization based on GPS, or vision-
based navigation, which won’t work in dark spaces).
Furthermore, constraints stemming from requirements
propagate into other constraints. For example, the re-
quirement of navigating through cluttered spaces could
rule out some classes of sUAV platforms because of size.
The requirement for smaller platforms in turn limits the
sensing and processing that can fit onboard.
Second, operational requirements induce con-

straints on the set of viable operational architectures.
These may include constraints on roles humans play
in the coordination of human and machine. In ad-
dition, operational requirements may induce con-
straints on the vehicle autonomy architecture.
Third, mission- or customer-centric requirements re-

lated to sizing could affect the degree of autonomy
allowed. Especially for small aircraft, such as sUAVs, the
equipment used to achieve high levels of automation
may scale disproportionately and actually begin to drive
size and performance metrics. One option for achieving
autonomy on sUAVs is to distribute the cognitive ca-
pabilities between onboard and ground processes. This
would increase the complexity of the design by re-
quiring the addition of communication overhead be-
tween ground and vehicle; however, the need for a
cognitive capability might favor a distributed design, as
long as the required responsiveness of the system is
maintained despite the communication overhead.
Fourth, considerations of equipment and tech-

nologies needed for a mission raise questions about
the intended role of autonomy. For example, at NASA
it has been common to classify machine autonomy as
enabling or enhancing a mission. Autonomy is en-
abling if mission goals cannot be accomplished
without it; autonomy is enhancing if it offers a better
(safer, more effective, more robust) alternative to
purely manual operations. Put another way, an en-
abling capability is usually one for which manual
operations are impossible, too dangerous, or too dif-
ficult. Similarly, to be determined as enhancing often
means that some machine capability improves the
human operator’s cognitive capabilities or offers a
more robust, effective, and safe alternative to manual
operations. As a special case, a mission might have a
built-in requirement to test new technologies (for
example, the remote agent experiment on NASA’s
Deep Space One mission).1 In such special cases, the
autonomy clearly becomes enabling for the vehicle.
Fifth, legal restrictions could affect all aspects of

autonomy design. Anticipating the focus of the next
section byway of illustration, current FAA rules on the
operation of sUAVs restrict both human and auton-
omous operations and, relatedly, provide constraints
on both vehicle and operational architectures.
Finally, as noted earlier, design requirements often arise

from company best practices. Autonomy is a new suite of
technologies, and therefore theremightnot be ahistoryof
best practices associated with autonomous design. Tying

autonomydevelopment tobest practices is thebestway to
achieve acceptance (Bayouth, Nourbakhsh, and Thorpe
1997). Oneway to accomplish this is through a design for
preplanned product improvement (Raymer 2012), a
configuration that allows for the evolution of autonomy
capabilities over time. We see examples of preplanned
product improvement (P3I) extensively in defense in-
dustries and in automobile development.
Following the outline of the conceptual design pro-

cess, once a viable operational architecture for auton-
omy has been selected from the set of requirements, the
next step is to conduct trade studies to determine the
best equipment (hardware and software) for imple-
menting the component. A performance study would
decidewhether a candidate component has the desired
responsiveness to inputs or whether a component
exhibits the desired resolution. Another class of study
is more related to sizing constraints — does the pro-
posed component add too much weight or fit properly
into the vehicle? Do the processing requirementsmake
it impractical for the capability to be onboard? A third
class of trade study involves development cost: for
example, should the software required for the capa-
bility be developed in-house, or should an open source
version of the capability be considered?
To summarize, conceptual design for autonomy

consists of deriving component cognitive capabilities
from mission and operational requirements. For each
capability, a component analysis determines whether
machine autonomy is enabling or enhancing. Com-
ponent capabilities are combined into an architecture.
Architectural issues include identifying a communi-
cation infrastructure to tie the components together;

Deliberative

Executive

Real-time Control

Hardware

Figure 2. Generic Three-Tier Architecture for Autonomy.
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determining the distribution of capabilities onboard
and on remote processors, as well as determining the
coordination of human and automation; and deter-
mining an autonomy deployment path that respects
best practices and ensures acceptance.
The results of the discussion in this section are

summarized in table 1. To complement and provide
detail to this discussion, we next describe a real-world
example.

Case Study: Autonomy for sUAVs
In this section, we illustrate the conceptual design
process for autonomy with an example using sUAVs,
which have been proposed for a variety of commercial
(industrial and agricultural) and military applications,
including border interdiction, search and rescue,
wildfire suppression, communications relay, law en-
forcement, disaster and emergency management, and
three-dimensional archaeological map reconstruction.
A recent body of work has emerged in which au-

tonomy capabilities have been proposed for sUAVs,
both fixed-wing and rotary wing. Designing auton-
omy for sUAVs is a different problem than designing
for larger platforms. More specifically, there is an
important trade-off between desired degrees of auton-
omy and the performance of the vehicle as captured by
its size, weight, and power requirements. Additionally,
sUAV platforms are typically cheap, modular, and easily
reconfigurable. This makes it possible to apply them to
highly specialized applications.

A number of technical challenges make developing
hardware and software systems for sUAVs more
difficult than for ground robots (Bachrach et al.
2011). Limited payload. This reduces the com-
putational power available onboard and some-
times precludes the use of high-fidelity sensors.

Noisy position estimates. While sUAVs will gen-
erally have an inertial measurement unit (IMU),
double-integrating accelerationmeasurements from
lightweight microelectromechanical systems IMUs
results in large position errors.

Fast dynamics. sUAVs have fast and unstable dy-
namics, which result in a host of sensing, esti-
mation, control, and planning challenges.

Constant motion. Unlike ground vehicles, an sUAV
cannot simply stop and performmore sensing or
computation when its state estimates have large
uncertainties.

Planning in a three-dimensional representation of
an environment. A three-dimensional configu-
ration space in general makes path planning
more computationally intensive.

Some design parameters that drive requirements for
sUAVs include whether the sUAV will be flown in an
indoor or an outdoor environment; whether daytime
or nighttime navigation is required, whether the
operating environment is GPS available or GPS de-
nied, whether the environment is well mapped or
unknown, whether the environment is cluttered or
uncluttered, and whether the environment is con-
fined or open.
Another possible design consideration is cost. Lower-

cost sUAVs— such as the AR.Drone,2 in the price range
below $1500 — use less-expensive hardware for
onboard sensing and processing. Although they con-
tain an IMU and often a GPS unit, measurement ac-
curacy and stability are usually reduced. Consequently,
cameras and computer vision are often used for au-
tonomous control to compensate for performance
limitations. On the other hand, higher-cost plat-
forms, such as AscTec, offer improved flight stability
and more sophisticated sensing units, such as laser
rangefinders or thermal infrared cameras (Mathe and
Buoniu 2015).

Example Mission:
Autonomous Search and Track
To illustrate the process of integrating autonomy into
the design of a complex robotic system, in this section
we consider the application of autonomy to a search
and track mission. In this application, an sUAVmust
search for a target of interest, and once the target is
found it must be tracked until some terminal condition
is attained. For example, the target of interest might
be a human poaching rhino horns in South Africa
(Save the Rhino International 2015). The purpose of
this search and track application is to search for po-
tential poachers; if one is detected, their location is
communicated to ground control; if the target is
moving, follow the target; terminate mission when
target is captured.
Autonomous search and track offers a useful illus-

tration of the layered nature of autonomous behaviors.
Next, we examine the cognitive capabilities underlying
search and track and how they combine into an op-
erational architecture.

Requirement Relevance to Autonomous Design

Mission purpose Cognitive components for accomplishing
mission goals and for safe operations

Operations Distributed architecture/human-machine
architecture

Mission/customer-
centric

Constraints on operational architecture

Equipment and
technologies

Enabling versus enhancing technologies

Legalistic Human-machine architecture

Best practices P3 I for integration of autonomy
technologies

Table 1. Summary of Requirements for
Conceptual Design and Relevance to Design for Autonomy.
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Component Cognitive
Capabilities for Search and Track

The requirements for search and track give rise to four
component cognitive capabilities.
First, sensing capabilities include the ability to

detect a human being in motion. For machine de-
tection, it is possible to use pretrained, open source
software such as a HOG-Haar detector (Dalal and
Triggs 2005) to detect human beings from video
stream obtained from the UAV. Alternatively, a
deep neural network can be trained, using images
from relevant data sets (Krizhevsky, Sutskever, and
Hinton 2012). For example, successful pedestrian
detection using deep learning techniques has been
proposed in the literature (Ouyang and Wang 2013).
Similarly, there are various approaches to tracking an

object of interest, including tracking-learning-detection
(Kalal, Mikolajczyk, and Matas 2012) and clustering of

static-adaptive correspondences for deformable object
tracking (CMT) (Nebehay and Pflugfelder 2015).
Second, an autonomous control alternating be-

tween following a trajectory (for search) and tracking
an image must be developed. On the one hand,
methods for achieving effective and robust trajectory-
based control are available (Mathe and Buoniu 2015;
Srivastava et al. 2014). On the other hand, visual
servoing is the use of image features for controlling a
robotic vehicle, and image-based visual servoing (IBVS)
uses image features for control. The image features used
in search and track are obtained by the tracker. The
controller develops feedback commands to keep the
bounding box in the center of the image plane. These
control feedbacks are decoupled into altitude and lat-
eral movements and are then sent to a calibrated
controller, which outputs speed commands. See the
paper by Pestana et al. (2014) for details of the con-
troller used in the system developed for this article.

Detector status

Mission Goals
Mission
Controller Mission Planner

plan

Plan Dispatcher

Plan Model

Autonomous
Search and
Track

track search

State information

IBVS
Image features Tracker

Model

Tracker

Trajectory-based Control
Detector
Model(s)

Trajectory-based
controller

Image-based
controller

Control inputs Sensor Outputs

Detector(s)

•  Hovering
•  Take off
•  Land
•  Forward Flight

•  Accelerometers
•  Gyrometers
•  Video Camera
•  Ultrasonic Sensor

sUAV

Drone Flight Modes: Sensors:

Figure 3. Operational Architecture for Autonomous Search and Track.
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Third, a deliberative layer must be able for deciding
which behavioral mode (search or track) should be
operating. This is a role provided by the executive
(Williams and Nayak 1997), a system for dispatching
actions, managing time and resources, monitoring
the execution of the plan, and initiating plan changes.
Execution models can be based on procedures or on
finite-state machines (Bohren et al. 2011).
Finally, a deliberative planning layer must be used

to devise a plan for search. Planning for search and
track (and variants such as search and rescue) is one of
the oldest problems in operations research. The
foundations of the theory of search are found in the
paper by Koopman (1957), which divides the problem
into two subproblems: optimal allocation of effort
(that is, what percentage of time to spend in a given
subregion) and optimal rescue track. Planning for
search is potentially challenging because it is assumed
that the target is in an area that is too large to search
exhaustively, the target’s location is represented as a
probability distribution over subregions of the search
area, and the targetmayormaynot bemoving. A typical
planning cycle involves the production of a probability
distribution for the object’s location at the time of the
next search. A trajectory uses this distribution along
with a list of assigned search assets to produce

operationally feasible search plans that maximize the
increase in probability of detecting the object. If the
search is unsuccessful, a posterior probability map for
object location that accounts for the unsuccessful search
and the possible motion of the object is generated,
providing the basis for planning the next increment of
search (Kratzke, Stone, and Frost 2010).
These four cognitive components occupy a wide

range of behaviors between the purely reactive and the
purely deliberative. They interact in complexways that
require an effective and robust coordination mecha-
nism, and they provide a good example of distributed,
hierarchical organization, as we now examine.

Operational Architecture
for Search and Track
We’ve noted that autonomy architectures are fun-
damentally hierarchical, distributed, and human
centered. In this section we frame these features in the
context of search and track.
Figure 3 proposes a hierarchical autonomous ar-

chitecture for search and track.Mission goals are inputs
to the system. A mission controller acts as planner and
plan executive. High-level plans for searching are
generated and dispatched at this level. The ability to
switch between searching and tracking is represented

Figure 4. Testing Autonomous Search and Track Using the Morse Blender Simulation Environment.
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as a high-level loop from the plan dispatcher to the
lower-level controllers. In thismanner, low-level control
alternates between an IBVS for tracking and a trajectory-
based controller for searching. Both consist of a control
loop that utilizes vision for estimating position (during
search) and for keeping a target of interest in view (for
tracking). Each controller sends control actions to
manage the flight modes of the sUAV and uses sensory
inputs inside their control loop. A hierarchical organi-
zation is transformed into anoperational architecture by
deciding, roughly speaking, what goes where. This de-
cision has two parts. The first allows for a determination
of the vehicle architecture, the capabilities that reside
onboard. One design trade-off here is communication
overhead and increased processing power (as well as
cost). sUAVs are intrinsically limited to small payload
capabilities as well as onboard processing power. One
solution is to migrate some of these capabilities to a
ground computer. For example, Chakrabarty et al.
(2017) describe a tracking system using an AR.Drone
with a visual search loop running on a ground computer.
The second part of the decision requires specifying

the boundaries between human and machine decision
making. In the search and track example, it may be de-
cided that humans at a console perform the search phase
of the operation,whereas the sUAVconducts the tracking
on its own. Clearly, other hybrid designs between the
fully manual and the fully autonomous are possible.

Evaluating Autonomy
During Conceptual Design
In an earlier section it was noted that part of the con-
ceptual design phase involves analyzing and optimizing
candidate designs. We close this study in this section by
evaluating designs for autonomy, using the performance
metrics defined earlier and using the search and track
example. We focus on an example of evaluating a single
autonomous behavior: the ability of the executive com-
ponent of an autonomous sUAV to alternate between
search and track to keep a target in view. This behavior
was chosen because it requires an effective combina-
tion of inference and sensing to perform effectively.
Morris et al. (2017) provide a more detailed discussion.
First, we review some general requirements. The

overall purpose of the mission was a special case of an
autonomy technology demonstration, that is, to test
new autonomy capabilities related to search and track.
For this reason, by definition, autonomy is enabling
for this mission. Second, the interest was in a fast
development and testing cycle, which means that
preference was given to cognitive components that
were readily available and could be integrated quickly.
For these reasons, the hardware and software were

chosen to enable quick development and integration.
First, an IBVS system (Pestana et al. 2014) and a tracker
(Nebehay and Pflugfelder 2014) were integrated as
modules in ROS (Quigley et al. 2009). A HOG-Haar

Figure 5. Simulating Motion Blur to Mimic Real Flight Data.
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detector (Dalal and Triggs 2005) was integrated with
the trajectory planner to search for a human target.
Plan generation for search and track and the dis-
patching of plans were implemented using either
ROSPlan (Cashmore et al. 2015) or SMACH (Bohren
et al. 2011) for comparison. A Parrot AR.Drone quad-
rotor was commanded from a computer via WiFi link
using the AR.Drone Autonomy ROS package2 or in
simulation using Gazebo (Koenig andHoward 2004) as
well asMORSE-Blender. All simulationswere rununder
Ubuntu 14.04 LTS 64-bit and an Intel Xeon E5-2630 @
2.60 GHz × 17 CPU, a NVIDIA Quadro K5000 GPU,
and 32 GB of RAM.
The simulation platform provided safe and fast

opportunities for comparing the performance of
different algorithms or models (figure 4) and
allowed a quick way to fine-tune certain parameters
such as controller gains and delays between target
identification before flight experiments. Other
trade studies for autonomy that benefitted from
simulation include the choice of onboard sensors
and the study of communication delay. For ex-
ample, thermal cameras were studied for nighttime
detection.

For target search from an sUAV, one important
parameter is identification of the target from amoving
platform. Images from a moving vehicle are often
subject to motion blur. This makes object identifica-
tion extremely difficult. Figure 5 shows how motion
blur was reproduced in simulation. Simulated tests
allowed for the discovery of the maximum velocity of
the vehicle in which object detection still worked.
Furthermore, it was found that different algorithms
for object detection had different effects on the blur.
While deep learning methods always outperformed
simple HOG-Haar networks for pedestrian detection,
they were alsomore susceptible tomissed detection in
case of motion blur. These factors helped us select the
maximum speed at which the vehicle was allowed to
operate while searching for a target.
In addition to simulation, flight tests during con-

ceptual design were conducted in an indoor test fa-
cility at the NASA Ames Research Center. Some of the
results summarized here are discussed in more detail
elsewhere (Chakrabarty et al. 2017). The indoor facility
at the Ames Research Center is a controlled environ-
ment that can be used to test systems before moving
on to realistic outdoor environments. Specifically, for

Figure 6. Testing Autonomous Search and Track at the Ames Research Center Indoor Facility.
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executive controls the high-level state variables search and track for replanning purposes and invokes the detector and tracker. (c), (d) The
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search and track, the interactions between the con-
tinuous planning framework and the underlying
sensing and control frameworks can be studied in
detail. On the other hand, it is not a good environment
for testing autonomy robustness; for this, a more re-
alistic outdoor environment is required.
As noted, an executive dispatches plans and mon-

itors their progress, possibly triggering new planning.
In search and track, the executive must be able
monitor the progress of the search for a target and to
switch to tracking mode if the target is found.
To test the executive in our controlled environ-

ment, a human target would begin out of sight of the
sUAV. The sUAV would take off and begin a pattern
maneuver (such as a square or spiral pattern) in search
mode. Once the human target was found, we studied
the response time of the system to transition into
track mode. Once in trackmode, the target would first
move in a slow walk to demonstrate simple tracking
behavior. At some point, the target would take evasive
maneuvers until the subject was out of sight to the
sUAV.We then could observe the transition back into
search mode, which consisted of following another
pattern search (typically a simple rotation). This al-
ternating behavior of search and track typically was
repeated many times in a single run.
Figure 6 shows a screenshot of the run time be-

havior of the system. The top left window shows
the output of the human detector window with the

bounding box. The bounding box is inherited by the
CMT tracker, as shown in the bottom right window.
The top right window shows the output of the IBVS
controller. The bottom left window shows part of the
SMACH planner visualization.
Figure 7 illustrates the behavior of the executive.

The variables person_detected and confidence in
the CMT tracker are monitored by the executive
to determine whether the system should be
searching or tracking. The system is designed to
switch from searching to tracking only when the
detector finds the human figure and the confi-
dence variable exceeds the desired threshold. This
aspect is important as both variables are prone to
noise because of their dependency on visual
features.
Other indoor tests explored alternatives to tar-

get detection. First, a human detector model based
on training a deep neural network was used to
identify persons with backpacks (for example, to
be used by an sUAV to monitor for drug smuggling
across borders). Figure 8 shows a variation of the
indoor experiment in which the system distin-
guished a human being with a backpack from one
with no backpack. Other tests examined search
and track with a thermal camera. The system was
able to identify multiple human beings from only
a low- resolution thermal image using deep
networks.

Figure 8. Tracking Person with Backpack Only.
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Summary
Mission and operational requirements for effective
and robust search and track lead to defining a number
of cognitive capabilities in sensing, communication,
and intelligent control and navigation during conceptual
design. Autonomy can be enabling or enhancing for
one or more of these capabilities. The design com-
ponents of autonomy for search and track consist of
algorithms and associated software models for plan-
ning, execution, search, detection, and tracking; sens-
ing, processing, andmemory hardware; aerial platforms;
and infrastructure for development and testing (in-
cluding ROS, simulation environments such as MORSE,
and indoor or outdoor field testing). In addition, au-
tonomyperformance testing for search and track scans a
wide range of goal-directed behaviors, from purely re-
active (maintaining an object in view) to tactical
(knowing when to switch from search to track mode
when an object is found) to deliberative (generating
effective plans for search). Finally, testing a system for
autonomy involves the three metrics of effectiveness
(does autonomy enhance or enable behaviors that ac-
complish mission and operational goals?), robustness
(does autonomy adapt successfully to changes in its
mission or operational environment?), and safety. These
considerations of autonomy have never been a part of
traditional conceptual design, as discussed earlier.
We presented a simple example of conceptual de-

sign for a search and track mission based on fast de-
velopment and testing of autonomous cognitive
capabilities in planning and execution. These re-
quirements led to selection of platform and sensor
hardware and software. We illustrated the role of
simulation and testing in isolating a particular behavior
of the executive to alternate between search and track,
measuring the effectiveness of this component.

Conclusion
This article argued for autonomy as part of concep-
tual design to ensure optimal design and acceptance.
We reviewed principles of conceptual design for
aeronautical vehicles, as well as the capabilities and
performance metrics of autonomous systems. We
reviewed architectures for autonomy and argued that
autonomy is inherently layered, distributed, andhuman
centered. We briefly discussed how considerations of
autonomy change the conceptual design process,
starting from determining whether autonomy is en-
abling or enhancing for a mission. Finally, we walked
through a simple but illustrative example of autono-
mous search and track for sUAVs.
As noted by Russell and Norvig (2016), “Intelli-

gence is concerned mainly with rational action; ide-
ally, an intelligent agent takes the best possible action
in a situation.”Here we have quantified rational action
as correctness and responsiveness of an autonomous
system. Considering autonomy at the conceptual de-
sign phase should be an integral part of designing

future autonomous systems. Specifically, a more rig-
orous design based on autonomy will reduce design
cycles and better ensure successful deployment.
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