
There have been many recent advances in artificial intel-
ligence and machine learning that have addressed the 
speed and accuracy of detecting malicious activity so as 

to better defend networks. Many of these solutions are able 
to take predetermined actions against detected activities in 
order to bolster defense and to prevent system compromises 
— such as dynamically reconfiguring a firewall rule to block 
attempted denial of service attacks. Today’s solutions howev-
er, generally stop short of either directly interfering with 
malicious activity or gracefully responding to more subtle 
indicators of malicious intent. The current risk is that false 
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n Traditional cyber security techniques 
have led to an asymmetric disadvantage 
for defenders. The defender must detect 
all possible threats at all times from all 
attackers and defend all systems 
against all possible exploitation. In con-
trast, an attacker needs only to find a 
single path to the defender’s critical 
information. In this article, we discuss 
how this asymmetry can be rebalanced 
using cyber deception to change the 
attacker’s perception of the network 
environment, and lead attackers to false 
beliefs about which systems contain 
critical information or are critical to a 
defender’s computing infrastructure. We 
introduce game theory concepts and 
models to represent and reason over the 
use of cyber deception by the defender 
and the effect it has on attacker percep-
tion. Finally, we discuss techniques for 
combining artificial intelligence algo-
rithms with game theory models to esti-
mate hidden states of the attacker using 
feedback through payoffs to learn how 
best to defend the system using cyber 
deception. It is our opinion that adap-
tive cyber deception is a necessary com-
ponent of future information systems 
and networks. The techniques we pres-
ent can simultaneously decrease the 
risks and impacts suffered by defenders 
and dramatically increase the costs and 
risks of detection for attackers. Such 
techniques are likely to play a pivotal 
role in defending national and interna-
tional security concerns. 
 



positive rates can be quite high and responding to 
these would cause more harm than good. Often, it is 
still a human operator who weeds through the alerts 
generated by an ML-based detector, determines 
which are true and which are false positives, and 
then coordinates with a cyber defender to respond to 
the suspicious activity. The problem is further exac-
erbated by the limited set of responses available to 
human and automated protection systems. Today’s 
intrusion detection and intrusion prevention sys-
tems include heavy-handed response options such as 
block suspicious IP or quarantine machine. The lim-
ited set of available responses tends to drive both the 
need for higher-confidence alerts and the necessity 
of human-in-the-loop decision-making. 

In this article, we will show how a handful of net-
work-based interference and packet-manipulation 
techniques can be combined with game theory and 
rule-based reasoning to automatically react and 
respond to attacker activity even when overall confi-
dence in detected events is low. Our current work 
focuses on a set of goal-driven cyber deception tech-
niques that enable a much richer set of prestaged 
defensive postures and adaptive responses as well as 
high-confidence indicators of malicious intent. This 
emerging area of research is based on well-known 
principles of human behavior and cognition, which 
tend to diverge from traditional computer security 
responses and risk management (Gutzwiller et al. 
2018). 

Attacker Advantage 

To frame our problem statement in a clear manner, 
we present a notional model of what we mean when 
we say that the attacker has an asymmetric advan-
tage over a defender. As the attacker’s probability of 
a successful attack increases, the defender’s risk of 
compromise increases and the attacker’s risk of detec-
tion decreases. In a naive model of risk, these two 
may be inversely proportional to one another, as 
shown in figure 1. A slight increase in the probabili-
ty of success of an attack (including avoidance of 
detection) would always result in a proportional 
decrease in risk for the attacker and increase in risk 
for the defender. This relationship describes, in 
essence, how cyber risk is estimated today, using lin-
ear combinations of weighted measures such as the 
number of vulnerabilities, the likely severity of a 
breach, and the cost of mitigation or recovery. How-
ever, this model fails to account for asymmetries in 
cyber warfare as it exists today. The attacker is often 
not detectable using traditional pattern-based detec-
tion schemes and may often also be able to choose 
one of many possible vulnerabilities and many pos-
sible systems to exploit. This imbalance results in a 
situation more in line with that depicted in figure 2. 
The problem is made worse by the techniques cyber 
attackers have long used, such as deception, distrac-

tion, and the use of previously unknown, and there-
fore indefensible, attacks. The defender’s risk dra-
matically increases as the probability of a successful 
attack increases. Attackers expend few resources, 
while defenders bankrupt themselves mitigating vul-
nerabilities and recovering from breaches. The area 
between the curves represents the differences in risk 
between attackers and defenders. When an attack has 
a low likelihood of success, the defender has an 
advantage. When an attack is likely to succeed (giv-
en all defensive techniques known to the defender), 
the situation is reversed. 

While these models are only notional, they pro-
vide a means for reasoning about what type of 
change particular defenses are likely to bring to a 
cyber defense scenario. 

Game Theory 

Unlike many games of conflict that are studied in the 
academic literature, computer security games tend to 
have some unique properties that make them both 
interesting and somewhat challenging to model (Roy 
et al. 2010). Games such as chess and Go, while com-
putationally challenging from a state-space perspec-
tive, have many properties that lend themselves well 
to formalization in a game theory framework. In 
such games, each player has the same set of available 
strategies and the same overall goal, making the 
game symmetric and the players interchangeable. 
Players are given generic and interchangeable identi-
fiers, such as Player 1 and Player 2. Network and com-
puter security games, however, have players who 
have asymmetric strategy sets and goals that are not 
only opposing, but that might have very different 
end states and resulting payoffs. In general, we treat 
one player as the defender and the opposing player as 
the attacker. This distinction is important, as the 
players in these types of games are not interchange-
able. 

Fortunately, many security games can be modeled 
around a common resource relating to one of the 
well-known computer security measures of confiden-
tiality, integrity, or availability  (the often-cited CIA 
triad). In cases where players are aware of one anoth-
er’s goals, they are likely to have game outcomes that 
can be modeled in a zero-sum fashion. For example, 
a defender’s goal might be to prevent data exfiltra-
tion, whereas the attacker’s goal might be to achieve 
data exfiltration. Each player is reasoning about the 
confidentiality of information, but with opposing 
goals. Any successful exfiltration of information by 
an attacker represents loss of confidentiality for the 
defender. While the actual value (and assigned 
weights) of the information might differ between 
players, we can set this aside for later discussion. 

In other cases, the defender and attacker might 
have goals whose end states are not easily compara-
ble. This situation occurs when some aspect of the 
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game is hidden from one or both players. For exam-
ple, an attacker might desire to exfiltrate data, where-
as the defender might be solely concerned with 
perimeter defense, with a goal of denying any and all 
access from attackers while allowing unfettered 
access to legitimate users. This kind of scenario is 
common in network security situations and results 
from the defender being unaware of the attacker’s 
goal. As a result, the defender often uses a defense 
that might be exceptionally effective at preventing 

initial access to systems on their network, but that is 
quite poor at preventing data exfiltration for con-
nections that are already established or that are cre-
ated by hosts residing on the inside of the corporate 
firewall. 

Traditional game theory uses the ideas of incom-
plete and imperfect information to describe scenarios 
where one of the players has incomplete knowledge 
of the sets of strategies available or the payoffs of 
game end states (for either themselves or the other 

Figure 1. Naive Model. 

In a naive model, the attacker and defender risk curves are inversely proportional. As the probability of a successful attack 
increases, attacker risk decreases and defender risk gradually increases. 
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Figure 2. Asymmetries Cause Model to Fail. 

All too often in cyber warfare, the attacker has an asymmetric advantage over the defender through the use of deception, 
distraction, novel exploits and cost asymmetries (such as the low cost of exploiting multiple systems and the high cost of 
remediation). 
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player) or imperfect knowledge of the history of 
moves taken. Some card games, such as poker or 
blackjack, deal cards to each player over several 
rounds. The specific history of cards that are dealt (or 
held, for blackjack) can be only partially known from 
the player’s own hand or by those played face up (by 
counting card frequencies as they show up in play). 
In such games, the players are symmetric with 
respect to goals, available moves, and how much 
information each player has about the history of the 
game. Each player knows their own hand (and histo-
ry) perfectly, but must attempt to infer the cards 
played or held by others by taking into account those 
shown to all players. Deception and bluffing also 
play a role in these games, which we will use as a 
springboard for discussing cyber deception tech-
niques shortly. 

In such games, the payoff value of particular cards 
might also be unknown. In a game such as Texas 
hold’em poker or even go fish, players each have 
information which is shared to the group of players, 
but for which the player’s actual payoff values for 
each displayed card are unknown. In go fish, players 
request cards from others, possibly indicating a pref-
erence for a particular card. In Texas hold’em, the 
community cards are visible to all players and a play-
er’s willingness to continue the game can also indi-
cate information to their opponent(s). In either 
game, players may bluff and request cards they do 
not need, or continue play even though their hand is 
actually poor. As we will show later, both learning 
preferences and bluffing are desireable strategies in 
computer security environments and one of the out-
standing challenges that we have been attempting to 
solve through our research on defensive cyber decep-
tion. 

Another complexity of real-world situations such 
as those appearing in cyber defense is one of ethics. 
In most situations, we must intentionally restrict 
defender behaviors based on legal and ethical princi-
ples. Unfortunately, attackers do not necessarily have 
such restrictions. While an ethical defender is gener-
ally not allowed to harm network-based attackers, 
attackers often exploit computer networks specifical-
ly for the purpose of harming the defender or the 
defender’s systems. As noted earlier, this imbalance 
presents a situation that provides the attacker with 
significant and unfair advantage. Such advantage 
often makes game-theoretic analysis of formal mod-
els of the behaviors somewhat uninteresting — the 
defender always loses. In game theory terms, analy-
sis becomes much easier (and sometimes trivial) 
when there exist strongly dominated strategies for 
which no move is beneficial for defenders. It is our 
intent in this paper (and in our research) to demon-
strate feasible techniques to both hinder the attacker 
and improve the defender’s advantage, so as to make 
these games more interesting and to even tip the bal-
ance in the direction of the defender. 

Cyber Deception 

Traditional security controls tend either to require 
being built into the systems a priori or to focus on 
blocking known malicious behavior or new suspi-
cious behavior. These security controls, while impor-
tant, have limited successes. Security solutions 
focused on hardening systems and perimeter defense 
are missing the dynamic component that deals with 
new events that have thwarted our current defenses 
and gained access to our network/systems. There are 
always new vulnerabilities, new tactics, new ways to 
gain illegitimate access. Some solutions focus on 
detecting anomalous behavior and then either quar-
antining it or ejecting it from the network. While this 
solution might temporarily handle a security breach, 
ejecting a persistent attacker will just lead them to 
find a new strategy. This cycle can continue until 
they have found a path that is unprotected and they 
are undetected. So, it can be argued that just blocking 
suspicious activity can lead in the long term to more 
undetectable attacks on the network. This disadvan-
tage is precisely why the cyber defender notoriously 
has the harder job. An attacker need only find one 
way in. Is it even possible for an operational network 
to be constantly protected at all points? 

The cyber defender’s job is difficult, but defensive 
cyber deception is an emerging area of research that 
might bring some advantage back to the defender 
(Heckman et al. 2015; Rowe and Rrushi 2016). Cyber 
deception can be used to delay, misinform, and deter 
a cyber attacker. Such deception will at least slow 
down the attacker’s successes, and in the best case, 
misinformation can be used to disrupt or deter an 
attack altogether. There are a variety of cyber decep-
tion techniques that can delay an attacker, including 
decoy systems, tarpitting, and honeypots. Cyber 
deception can also strategically provide misinforma-
tion about the network to a potential attacker. If the 
attacker does not know the true network topology or 
the types of systems and services running, launching 
a successful attack becomes much harder. Currently, 
the networks we are trying to defend are providing 
the attackers with true information, which the 
attackers are then using to attack and harm those 
same networks. Yet, anyone who has broken through 
the initial security barrier of a network should be 
treated as nefarious, with no right to accurate infor-
mation or good usability of the systems. Cyber 
deception, like encryption, is a good tactic for 
obscuring our critical information from attackers 
who wish to steal and abuse it. Attackers rely on 
observation of digital information for their intelli-
gence and generally have very limited ways to cor-
roborate the information they are presented. For this 
reason, deception is a powerful tool for cyber 
defense, and, we argue, should be used as ubiqui-
tously as encryption. 

Since cyber deception is based on principles of 
human cognition, it has the potential to affect the 
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attacker rather than just the attack. This refined tar-
geting allows for lasting effects — effects that can dis-
rupt future steps in the attack chain and future 
attacks by that attacker. By providing confusing and 
incorrect information about key terrain the attacker 
needs to complete their goals, we are able to do more 
than block one step in the attack; we are able to 
potentially disrupt or deter that attack (and maybe 
future attacks) altogether. 

Cyber Deception  
Games and Hypergames 

One of the simplest types of games we can analyze is 
one in which an attacker can choose whether or not 
to attack and a defender can choose to defend (or 
detect) or not to defend. In the simplest form of this 
game, there is only one system to detect and the 
player payoffs are symmetric and zero-sum. Figure 3 
shows this game in normal form, where each player’s 
strategies — that is, the choice between whether to 
take action (to attack or defend respectively) or not 
— are depicted as α or ᾱ respectively. This simple 
game is meant to reflect the kinds of choices made 
by attackers and defenders. A defender might choose 
not to defend for a round because of the potentially 
high cost of defending. Skipping a round saves 
resources. An attacker might choose not to attack due 
to the cost of attacking or because they believe that 
the system is defended and their attack will fail, 
resulting in them being ejected from the network. 

In the diagram, if the attacker chooses to take an 
action, denoted by α, then they are attacking. If the 
defender chooses strategy ᾱ, then they are not taking 
an action (and not defending). While this game’s 
structure is too simple to embody the nuances of 
cyber deception, it will serve as a springboard for lat-
er discussion. It should be noted that while we will 
describe each player as attacker and defender, in the 
simplest form of this game the players are essentially 
interchangeable. A notable exception is that the pay-
offs for ᾱ are opposing. The attacker has an advan-
tage for attacking in the top-right and bottom-left 
quadrants. The defender wins only in the top-left sit-
uation, again illustrating the asymmetric advantage 
enjoyed by an attacker. 

In this game model, the attacker’s goal is either to 
successfully attack an undefended system or (for 
defended systems) to cause the defender to incur a 
cost for defending the system even when it is not 
being attacked. The defender’s purpose is to defend 
against an active attack, while not wasting resources 
in attempting to defend against an attacker who has-
n’t yet attacked. The defender has limited computing 
resources and desires to ensure that each defense is 
useful. While this model and the player’s respective 
goals are gross simplifications, some of the realities 
of cyber attack and defense are nonetheless reflected. 
Defenders tend to be resource constrained, whereas 

attackers tend to desire to remain undetected. This 
kind of interaction is a common scenario on actual 
computer networks. 

In this game, the attacker is penalized for attacking 
while being detected and rewarded for attacking 
while not being detected. The defender is penalized 
for detecting while not being attacked and rewarded 
for detecting while being attacked. The logic here is 
that an attacker wants either to attack undetected or 
to cause the defender to waste resources, and the 
defender wants to detect attacks and not to use 
resources needlessly. 

The analysis of this type of game is straightforward 
and consists of finding equilibrium strategies that 
meet some predefined notion of optimality. In many 
cases where the players are in conflict and not coop-
erating in any way, the most-often used equilibrium 
is called the Nash equilibrium after Nobel Laureate 
John Forbes Nash (Nash 1951). In a Nash equilibrium 
(if one exists), neither player has an incentive to uni-
laterally change their strategies. This analysis for the 
game in figure 3 can be performed via simple inspec-
tion of the game, which results in players always 
switching strategies. In this game model, there is no 
state in which one of the players would not choose to 
change their decision and get a better payoff. That is, 
if we assume we are currently in any given quadrant, 
one of the players will choose to switch strategies for 
a higher payoff. As a result, at least in this game for-
mulation with its specific payoffs, there are no pure 
Nash equilibrium strategies. This type of analysis 
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Figure 3. A Simple Defense Game Payoff Matrix  
for a Zero-Sum Game of Complete Information. 
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assumes perfect information where both players 
know ahead of time precisely what the strategy of the 
other player will be. Games of imperfect information 
are also possible and we will return to this later. 

Since the game has no pure Nash equilibrium, we 
can set up an equilibrium expression to find a mixed 
strategy that allows players to choose each individual 
strategy according to a probability distribution across 
their choices. Because this is a zero-sum game, there 
always exists a mixed Nash equilibrium that is 
straightforward to compute using von Neumann’s 
minimax theorem (von Neumann 1928). If the attack-
er chooses to attack with probability p, the expected 
utilities for the defender are D

α
 : (1)p + (–1)(1 – p) = 2p 

– 1 and D
ᾱ
 : (–1)p + (0)(1 – p) = –p. The attacker can 

minimize the maximum payoff of the defender when 
2p – 1 = –p, so p = 1/3. Similarly, if the defender choos-
es to defend with probability q, then the expected util-
ities of the attacker are A

α
 : (–1)q + (1)(1 – q) = 1 – 2q 

and A
ᾱ
 : (1)q + (0)(1 – q) = q. The defender can mini-

mize the maximum payoff of the attacker when 1 – 2q 
= q, so q = 1/3. 

To anyone familiar with basic game theory, this 
result is hardly surprising. However, it suggests that 
we should reflect on our current strategies for per-
forming cyber defense. The game described assumes 
very little about the differences between attacker and 
defender rewards and penalties. It suggests that if we 
know little about the penalty for not defending, the 
cost of defending, or the payoffs of the attacker (oth-
er than their sign), then we should enable our 
defense only a fraction of the time. This type of 
analysis has been performed by a myriad of 
researchers on a number of elegant games related to 
cyber defense (Fugate 2012). However, their applica-
bility to real-world scenarios is limited. The most 
egregious limitation of such models is that the game 
structure and payoffs are mostly contrived (primari-
ly, but not always, for the purposes of making the 
analysis of the game interesting). So, while such 
games provide interesting insights, they tend to lack 
realism. 

This same simple game can also be used to describe 
instances where the defense strategy is to perform a 
defensive cyber deception action such as replacing a 
real system with a decoy. Without other constraints 
or stipulations, such a strategy would also follow the 
mixed strategy of enabling the defense with a proba-
bility of 1/3. However, this assessment assumes per-
fect and complete information on the part of both 
players. In this simple game, the attacker is fully cog-
nizant of the strategy employed by the defender and 
knows of the existence of the defensive strategy and 
the probability of its being enabled. In our research 
endeavors, we are calling an attacker who is aware of 
deception sophisticated (as opposed to naive). Inter-
estingly, when our game model includes deception, 
in addition to attackers having only partial knowl-
edge of defender strategies, an attacker might also 

suffer from false knowledge (a belief in something 
that is untrue). That is, if a deception technique is 
successful, the attacker will not only have partial 
information regarding the defender’s strategy (which 
in this case is knowledge of the mixed strategy prob-
abilities of the defender), but might also suffer the 
effects of false knowledge about the environment. 

For this adjustment to be modeled, allowing for 
the existence of false or partial knowledge on the part 
of the attacker, we must introduce additional game 
theory concepts: extensive form game representa-
tions, Stackelberg models, and the use of suboptimal 
play as a defender strategy over a sequence of game 
rounds. We introduce these concepts in the next sec-
tion and extend our initial game and its analysis 
directly. 

A Model for Cyber Deception 

One of the characteristics of cyber environments is 
that the actions of each player tend to be triggered 
by the actions of the other player. The player who 
takes the first action often (but not always) has an 
advantage (the first mover advantage). In traditional 
cyber defense scenarios, the defender waits until an 
attacker makes a (detectable) move and then 
responds. This strategy results in a situation in which 
the attacker has the advantage and the defender 
must clean up and deal with the repercussions of the 
attack. A fundamental goal of our research is to 
reverse this situation. In our cyber deception game 
formulations, we attempt to create a situation in 
which the defender makes the first move by prestag-
ing deception technologies on a network and select-
ing how these technologies will be deployed. This 
strategy allows the defender to control the initial 
environment, and as we shall see, to control the like-
lihood of attacker success. 

In the prior section, we analyzed a simple defense 
game presented in normal form, appearing as a 
matrix of player strategies with each box showing 
payoffs for each player. A game with n attacker strate-
gies and m defender strategies would have n ⨉ m 
game scenarios with a pair of payoffs for each. Games 
with more than two players can also be modeled this 
way. However, games in which a sequence of actions 
is taken by players in turn (such as chess) is more use-
fully modeled in extensive form (see figure 4). In this 
representation, a tree is drawn that represents each 
stage in the game, with each level of the tree repre-
senting the possible choices that can be made by one 
of the two players. Similar to a normal form game 
representation, each branch of the tree concludes in 
a leaf in which payoff values are specified for each 
player. 

Games that have a leader-follower structure, such 
as the extensive form game in figure 4, are also called 
Stackelberg games after the German economist Hein-
rich Freiherr von Stackelberg (von Stackelberg et al. 
2011). A key aspect of these kinds of game models is 
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that the leader commits to their strategy for a partic-
ular subgame based on backward induction, account-
ing also for the decision that the other player will 
make as a response. This type of game is no longer 
played in a simultaneous fashion, as is the simple 
normal form game. What makes the extensive form 
game difficult to analyze is that we must optimize the 
leader’s strategy against all possible follower respons-
es. For many realistic cyber defense scenarios, we 
might have long chains of player actions and 
responses, and in some games, chess for example, the 
state space of such a game grows very quickly. 

Both extensive form representations and Stackel-
berg game formulations also align with our goals of 
modeling information hidden from the attacker. The 
first player’s move might be entirely nonobservable 
to the attacker, as, for example, when the defender 
deploys decoy systems that look identical to real sys-
tems on the same network. In other cases, the attack-
er might be able to partially observe the defender’s 
choices (or have prior knowledge of likely moves). In 
these cases, the attacker will use their knowledge of 
the defender’s move to optimize their own choices. 

Rounding out our deception game model, we must 
also introduce the concept of repeated games in 
which play progresses through many independent 
rounds. Attackers might make only a single attempt 
at reconnaissance or exploitation on a network, but 
more often than not will make many attempts, often 
sending hundreds to thousands of packets to dozens 
of machines while remaining essentially undetected. 
This strategy is particularly true of network-based 
reconnaissance, where an attacker sends packets that 
occur frequently and that are perceived as innocuous 
but that lead to extensive knowledge about the net-
work and potential vulnerabilities. Each packet sent 
by an attacker can be considered by a deceiving 
defender as a single action in a cyber deception 
game. If the defending system’s responses are fast 
enough, then responses can be made on a packet-by-
packet basis. If the defender is adjusting and prestag-
ing defensive deception, then they are able to take 
the role of leader in a Stackelberg game. Over many 
rounds, the defender can use their first mover advan-
tage to win more rounds than the attacker or, as we 
will see in the next section, use deception to lure the 
attacker into believing the defender is a poor oppo-
nent engaged in suboptimal play. 

The Value of Suboptimal Play 

For repeated games, the value of suboptimal play is 
illustrated in (Bilinski, Gabrys, and Mauger 2018) by 
mathematically showing the disadvantage that 
defenders suffer when using a rational greedy strate-
gy. We argue that by using cyber deception, the 
defender can create an illusion of playing subopti-
mally, which presents an opportunity to shift the 
advantage away from an attacker. 

The types of cyber games that we are concerned 

with also concern human psychology, which 
includes our ability to reason about nonrational play-
ers. A perfectly rational player is generally easier to 
model. The specific mechanisms of nonrationality 
are often difficult to pin down and can vary between 
individual players, making any kind of formal analy-
sis quite difficult. Even when players are perfectly 
rational, seemingly simple games such as the prison-
er’s dilemma (Poundstone 1992) have been shown to 
have many somewhat unexpected results when play-
ers use a longer-term strategy over a repeated game. 
To those unfamiliar with it, the prisoner’s dilemma 
deals with a scenario in which two convicts are pro-
vided the option of decreasing their sentence if they 
defect and rat out the other prisoner. The game is 
interesting in that if the players were to cooperate, 
they would have a higher overall utility, but if either 
player defects, then they should both defect, result-
ing in a pure Nash equilibrium strategy that is worse 
than the social optimum. For repeated versions of the 
prisoner’s dilemma, various strategy policies can be 
defined that take into account the entire history of 
prior plays. Grim trigger and tit for tat are two strate-
gies that are often studied for repeated versions of the 
prisoner’s dilemma. The grim trigger strategy uses a 
policy of cooperating forever unless the other player 
defects and then always defecting afterward. Tit for 
tat defects if the other player defects and cooperates 
if the other player cooperates. In tournaments in 
which strategies are tested against one another, 
strategies can be better or worse depending on which 
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Figure 4. Example Cyber Deception Game Tree in Extensive Form. 
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strategy the other player chooses or whether players 
switch between strategy policies over time (Axelrod 
and Hamilton 1981). 

What is relevant to our research, and to our dis-
cussion of games of cyber deception, is that nonra-
tionality can be thought of as a strategy policy over a 
repeated game. One such policy that we have been 
exploring is one in which a human player suffers 
from an expectation bias. In this scenario, a player 
makes observations of the choices of the other play-
er that seem to represent consistent behavior and 
then matches their expectations of that player with a 
particular type. For example, an attacker might per-
form an assessment of a particular service port on a 
system that is often used for system management or 
administration (as with SSH, for example). Having 
seen several systems with this port open, they might 
then assume the same configuration will be present 
on all of the systems on the same network. Similarly, 
the attacker might observe behavior by systems and 
assume that this prior behavior will continue with-
out change, predicting that the systems will behave 
consistently. A defender can construct a situation 
where they play suboptimally, perhaps keeping a 
service port that is used for system management 
open without filtering, allowing an attacker to con-
nect to this port, and displaying service banners that 
indicate a poor security posture (such as using an 
outdated and insecure version of the management 

software). This kind of situation occurs frequently on 
networks and is exactly the type of vulnerability that 
attackers seek when looking for opportunities to 
compromise systems. Over many repeated games, 
our goal is for an attacker to have an overall low util-
ity. If the defender always plays optimally (for exam-
ple, by not presenting insecure services), then in 
many cases we might be forced into maintaining a 
Nash equilibrium strategy. For many situations, 
choosing a Nash equilibrium strategy might be better 
for the attacker than the defender. In our analysis of 
games of deception we believe that this imbalance is 
primarily due to the asymmetries present in cyber 
environments. When defensive deception is not 
present attackers need only successfully attack a sin-
gle system, whereas a defender must provide ade-
quate defensive measures for as many systems as pos-
sible on a continuous basis. There are also asym  - 
metries in how defenders and attackers reveal infor-
mation, with a defender’s systems often naively pro-
viding state and version information to all who 
request the information. 

A key insight of our work is that deception allows 
defenders to create scenarios that cause an attacker 
to believe they are choosing an optimal strategy (or a 
Nash strategy), when in fact, due to defender manip-
ulations of the environment, they are being lured or 
goaded into choosing a suboptimal strategy. If we 
modify the payoffs of the defense game in figure 3, 
we can end up in such a situation. Figure 5 shows our 
original defense game with a false set of payoffs in 
the upper-right quadrant (shown in red). 

In this model of the game, the defender’s payoffs 
are adjusted to simulate a high cost of failing to defend 
(an intentional ruse that presents false values to the 
attacker, shown in red in the payoff matrix). As before, 
analysis of this game is straightforward. If the attack-
er chooses to attack with probability p, the expected 
utilities for the defender are D

α
 : (1)p + (–1)(1 – p) = 2p 

– 1 and D
ᾱ
 : (–2)p + (0)(1 – p) = –2p. The attacker can 

minimize the maximum payoff of the defender when 
2p – 1 = –2p, so p = 1/4. If the defender truly had the 
red payoff in the upper-right quadrant, and if the 
defender chooses to defend with probability q, then 
the expected utilities of the attacker would be A

α
 :  

(–1)q + (2)(1 – q) = 2 – 3q and A
ᾱ
 : (1)q + (0)(1 – q) = q. 

The defender would then minimize the maximum 
payoff of the attacker when 2 – 3q = q, so q = 1/2. 

In this formulation of the game, a defender having 
the upper-right payoff of 2/–2 would need to defend 
more frequently (with a probability of 1/2) and the 
attacker attack less frequently (with a probability of 
1/4). However, the premise of the game is a false one, 
perpetrated by the defender, who has caused the 
attacker to believe they had new payoffs in the upper-
right quadrant. With this deception, a defender can 
make an attacker believe that there is a higher cost for 
unsuccessful defense (that is, a higher-value target 
than the true system values). This misrepresentation 
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Figure 5. The Defense Game. 

In the upper-right quadrant, false payoffs  
are in red and true payoffs are in gray. 
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is exactly what is done in traditional honeypot tech-
niques — simulation of high-value targets that actu-
ally have very low value. In this game, the true pay-
offs have not changed and are still 1/–1 as in our 
original game model. The attacker has analyzed the 
game and chosen (what they believe to be) the new 
Nash equilibrium strategy. The attacker’s new proba-
bility of attacking is now fixed at p = 1/4. This is good 
for the defender. Fewer attacks are occurring, but the 
defender is free to defend with the original strategy of 
1/3 instead of 1/2. The defender now has an advan-
tage due to the decrease in attack frequency. Further-
more, the attacker believes they are playing the Nash 
strategy and that they can do no better. 

It is important to note that falling back on the 
original strategy is a safe strategy for the defender to 
take. Even if the attacker becomes aware of the 
deceptive payoffs, the defender cannot do worse 
than the original game. However, if the defender is 
confident in their deception, they might also adjust 
their strategy, potentially decreasing their rate of 
defense to better take advantage of the decrease in 
attack frequency. We leave computation of the new 
optimal defender strategy, given the fixed attacker 
strategy, as an exercise for the reader. 

A common practical example of where this analy-
sis is important is when a network is completely 
secured against known threats. The attacker will seek 
novel defects or misconfigurations, which will often 
be unknown and undetectable to the defender. How-
ever, if the defender presents a suboptimal strategy, 
one that presents service ports and versions that are 
vulnerable, the attacker will take the lower-cost strat-
egy of attacking the known vulnerability. The subop-
timal play by the defender lures the attacker into 
making a false payoff prediction and making a deci-
sion to commit to using a greedy strategy. Assuming 
the attacker has taken the bait, the defender can use 
deception to continue the ruse while performing 
adjustments to the network or to the behavior of sys-
tems with which the attacker is interacting. Cyber 
deception techniques can make the initial suboptimal 
play (having a vulnerable service, for example) just an 
illusion, and thus as safe as any other type of defense. 

Deception Hypergames 

Hypergame theory is an extension of game theory 
that is particularly applicable to games of cyber 
deception. A hypergame is a complex game in which 
at least one player has a misperception about the 
model of the game being played. In a hypergame, 
players might (a) be unaware that they are playing 
the game, and (b) be unaware of the possible moves 
in the game (Kovach, Gibson, and Lamont 2015). 
The attacker might not even know a cyber deception 
game is being played, and even if made aware of the 
certainty of deception, would not know what types 
of deceptive moves were available to the defender. In 
a cyber deception game, the defender’s game tree 

might look very different from that of the attacker, 
and the hypergame model can encompass all of the 
subgame trees as they are played out for each indi-
vidual player’s perception of the game. Further dis-
cussion, game tree examples, and formal notation for 
modeling cyber deception as hypergames is present-
ed in a paper by Ferguson-Walter et al. (2018). 

Manipulating the Gameboard  
Cyber deception is a powerful tool for defenders 
because it allows them to manipulate the gameboard, 
which has traditionally been a possibility only for 
attackers. We believe that the use of deception itself 
is a primary cause of the current asymmetry of cyber 
warfare. However, as the owners of the network, 
cyber defenders should be able to control the infor-
mation the network distributes and potentially 
change the way the network behaves. Such control 
would be akin to the defender changing the game-
board in the midst of a game of conflict with the 
attacker. In our estimation, this type of game manip-
ulation is able to give the defender an asymmetric 
advantage over an attacker. The gameboard can be 
manipulated in several ways, which can have various 
effects on the attacker. 

By changing the gameboard that the attacker sees, 
the defender is able to limit the strategies available. 
If the attacker has the wrong information about a sys-
tem, the strategies they think are applicable to attack 
will likely fail. Additionally, as noted, the hypergame 
model can encompass both the manipulations of the 
gameboard and the nonrational strategy policy used 
by the defender. 

One major advantage that cyber deception pro-
vides to a defender is the ability to change the per-
ceived payoff to the attacker. Each player is selecting 
actions and trying to maximize a long-term payoff. 
The payoff is an estimation of how good or bad the 
outcome is for that player. Recall that many game 
theory games are structured as zero-sum games, 
where the payoffs for each outcome add up to zero 
across the players. 

Since the defender can control the information the 
attacker uses to make their decisions (and form their 
game tree), the defender can manipulate the payoffs 
that the attacker associates with certain paths. For 
example, a defender can make a system look more 
vulnerable or more interesting. This distortion will 
cause the attacker’s perceived payoff for that 
machine to be much higher than the true payoff. 
Furthermore, if the defender is using decoys or hon-
eypots, the attacker’s perceived payoff might be very 
high, while the true payoff is instead very high for 
the defender. This negative true payoff for the attack-
er is due to the time and energy wasted on a fake sys-
tem, which is evident in human subjects studies on 
the effects of cyber deception (Ferguson-Walter, 
LaFon, and Shade 2017). 
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Learning in Cyber Deception Games 

For a defender to make wise decisions about how to 
best protect their network and systems, there are sev-
eral useful things they need to know. First and fore-
most, the defender will be more effective if they 
know when they are being attacked. They can use 
proactive defenses including preset cyber deception 
techniques, but the effect will be greater if they can 
also adapt those defenses based on details of a cur-
rent attack in real time. In addition to knowing that 
an attack is occurring, knowing details about the 
attacker and their actions will also help them devel-
op a better defense. Learning the preferences of the 
attacker (for example, they tend to attack Linux 
machines), the attitudes of the attacker (for example, 
they are noisy and not careful to avoid detection), 
and patterns of behavior (for example, the attacks 
occur at certain times of day) will aid the defender in 
customizing the gameboard and launching the best 
cyber deception. 

This learning cannot be completed through typical 
supervised learning classification techniques. There 
is no existing dataset with labels and information 
about the best tactic for these cyber defense situa-
tions. This is also not an unsupervised learning clus-
tering problem. To select the best response at any 
time, it does not help us to look for things that are 
similar and then to group them together. Semisuper-
vised learning, such as reinforcement learning, is 
likely the best tactic for this problem space. As the 
defender observes the actions of the attacker and 
interacts with them, the estimates and probabilities 
in the defender’s model of the world will be created 
and updated. Feedback to know whether a tactic has 
been successful or not is a critical, but complicated, 
component of semisupervised learning. 

Reinforcement Learning 

In general, reinforcement learning algorithms are a 
class of adaptive control algorithms that, through 
repeated interactions with a controlled system, learn 
to optimize some function of the state of that system. 
The system has the state set X and the action set A. 
Executing action a from state x causes a transition to 
state y with probability P(x, y, a). At each time step, t, 
the controller selects an action at based on observa-
tion and estimation of the current state, xt. The sys-
tem executes at, resulting in a state transition to xt+1. 
The reinforcement signal from the previous time 
step, rt–1, is used to adapt the controller over time so 
as to optimize a function of the sequence of rein-
forcement signals (Sutton and Barto 1998). 

A policy, or a control policy, is a function that 
takes some representation of the current system state 
as input and generates an action to take, thereby 
inducing a change to the system state. Typically, the 
action is chosen so as to meet certain desirable crite-
ria. Policy constraints are parameters, boundaries, 
and strategic guidelines that steer the selection of an 

acceptable policy. Policy constraints place restric-
tions on the types of actions that are available to the 
policy in different situations. 

Although RL algorithms have been used to build 
adaptive, optimizing controllers for many different 
kinds of systems, the theoretical foundations of RL 
assume that the system to be controlled is a Markov 
decision process (MDP). In an MDP, the system is a 
controlled Markov chain, where the state transition 
probabilities depend only upon the current state and 
the chosen action. Moreover, despite our best efforts 
to instrument the network to gather the necessary 
sensor data, there will be components of the system 
state that cannot be directly observed. This imperfect 
visibility means that we will be working with a par-
tially observable Markov decision process (POMDP) 
and that we will have to adopt some means of esti-
mating enough of the hidden state for the system to 
learn and improve over time (Spaan 2012). 

The game theory models provide the RL algorithm 
with a reward signal or expected payoff for various 
actions. The algorithm can also provide a path to 
estimating the hidden state of the POMDP. The 
defender’s game tree details all the possible paths and 
action sequences. This detailed mapping allows the 
defender to map from an observation to a path on 
the tree, thus estimating the current state, potential 
payoffs, and appropriate action. 

Finding the optimal policy for a cyber defense sce-
nario is complicated by the fact that this is inherent-
ly a multiobjective optimization problem: at each 
time step, the RL algorithm is presented not with a 
single cost, but with a vector of costs and rewards. For 
example, to find a good policy, the RL algorithm 
must find a way to equitably trade off a number of 
goals — such as (1) minimize communication costs, 
(2) minimize computation costs, (3) minimize dis-
ruption to defended systems, (4) maximize system 
availability, (5) minimize sensor costs — and then 
potentially invert these measures for the purposes of 
disrupting an attacker or causing an attacker to incur 
long delays or high communication or computation 
costs. 

Model Extensions 

Currently our model considers only games consisting 
of two game trees (Ferguson-Walter et al. 2018). A 
future extension of our work would expand this 
model to consist of additional game trees for various 
types of attackers and defenders. Our model current-
ly does a reasonably good job of intuitively describ-
ing a player’s model of the opposing player’s choices. 
However, when both players have uncertainty and 
when either might be deceived, we now must 
quadruple the number of game trees — from a single 
tree used in traditional extensive form games to four 
trees — so as to describe each player’s own model as 
well as each player’s model of the opposing player. 
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Extending this logic, we must also be capable of deal-
ing with situations of counterdeception. In the con-
text of this paper, counterdeception refers to a situa-
tion where the attacker is also using deception 
against the defender. 

Nonomniscient Defender 

In our initial model, we make the simplifying 
assumption that one of the two players has complete 
and perfect information concerning not only their 
own model of the game, but also that of their attack-
er. The assumption of an omniscient defender 
implies that the defender knows all potential attack-
er strategies, actions, costs, and payoffs. This assump-
tion is based on the idea that through the use of 
deception and manipulation of the cyber environ-
ment (such as swapping out a real machine for a 
decoy), a defender knows the environment because 
they fully control it. Missing from this model are 
characteristics and strategies of the attacker that 
might be unknown to the defender. For cyber envi-
ronments, this information is particularly relevant. 
Deception techniques are often used by attackers to 
manipulate perceived goals and to misdirect defend-
er resources, for example, by using a denial of service 
attack to mask more subtle activities and to keep 
defenders preoccupied in recovering systems to 
acceptable service levels. 

Further, attackers use assumptions of safety and 
security to break the rules that systems are built on. 
If the defender were truly omniscient, then the sys-
tem and all of its underlying assumptions would be 
perfectly modeled and the defender would be aware 
of all possible attacker actions, strategies, costs, and 
payoffs. Attackers rely on this very assumption to 
ensure that if they have high-confidence knowledge 
that their actions are currently undetectable (such as 
through the use of a zero-day exploit), then the 
defender will not be capable of using defenses against 
those strategies. Indeed, zero-day exploits represent 
situations in which attackers know of a defect that is 
new and that defenders might not be capable of rec-
ognizing or detecting. Today, attackers are correct in 
their assumptions: current defense techniques forego 
taking actions against unobservable attacks. While it 
would seem like a logical impossibility for a defend-
er to take an action against an unobservable attack, 
this is precisely what the defender does when we 
prestage deception to interfere with unknown attack-
ers and attacker actions. In our opinion, it is not only 
possible to model feasible strategies against unknown 
and unobservable attackers, but it is necessary if we 
are to be in any way capable of improving the status 
quo. 

While our current model does not directly address 
these concerns, it does allow for explicit representa-
tions of unobservable moves. Each layer in our game 
tree includes an additional branch to represent unde-
tected or unobserved moves by each player, and each 

player can use Bayesian reasoning to base new moves 
on the likelihood of an unobserved (and thus 
unknown) action being taken. 

In the context of our cyber deception games, from 
the defender’s perspective, the most important unob-
served move by an attacker is any interaction with a 
real system when there is no indication of mali-
ciousness. In a situation such as this, we have revert-
ed to the default cybersecurity situation where defen-
sive deception is not present. Cyber deception can 
mitigate this situation to an extent, but our model 
currently assumes that real and decoy are perfectly 
indistinguishable to an attacker. In reality, there 
might exist observable signals that could cause an 
attacker to be more interested in real systems or there 
might be defects in the deployment of decoys that 
deanonymizes them. 

From the attacker’s perspective, the most impor-
tant unobserved moves by defenders consist of cyber 
deception actions where the attacker’s knowledge of 
the game environment is completely undermined 
and replaced with an alternate reality. Similarly, the 
most important attacker strategies from a defender’s 
perspective are those in which deception has little or 
no effect. When defensive deception strategies are 
absent, the defender will always be at more of a dis-
advantage than when they are in use. In an environ-
ment in which attackers and defenders are both 
using deception, neither player has complete infor-
mation about the game, but both suffer the conse-
quences of deception. The defender in such a game 
cares most about attackers for which the deception 
has no effect, and attackers care most about defend-
ers who are effectively using deception techniques. 

The asymmetric nature of unobserved and unob-
servable actions in cyber deception games (and mod-
els of cyber games in general) is a fundamental part 
of military deception strategies as they have been 
understood historically (Whaley 1969). Incorporat-
ing these concepts into cyber defense is a natural 
extension of prior work and provides ample oppor-
tunities for future research in the application of game 
theory to the defense of computing systems. 

Conclusions 

Effective cyber defense must incorporate a mixture of 
“security hygiene” (for example, patching systems) 
and dynamic adaptive techniques. Adaptation is 
something that human attackers do very well. It is a 
critical component of why and how they often man-
age to thwart current security measures. If the attack-
er can quickly and easily adapt their attack and the 
defenders cannot do the same with their defense, 
then the defenders are playing a losing game. An 
adaptable security technique must be able to change 
quickly and to evolve over time if it is to match wits 
with the attackers. This autonomy is a component of 
cybersecurity well suited to an AI solution. 
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In order for an AI solution to adapt effectively, it 
must not only learn about the actions of the attack-
er, it must also have a mechanism for receiving feed-
back on its own decisions and actions and for updat-
ing its estimates accordingly. The game theory model 
discussed here begins to provide a framework for rep-
resenting and updating estimates of likely strategies 
and outcomes in the form of changing game tree 
structures and payoff scores. Using game theory to 
represent the conflict between the attacker and 
defender, to model the difference in perception, and 
to reason about the best course of action can be a crit-

ical component of an adaptive cyber deception sys-
tem. 

The AI defender must attempt to infer the attack-
er’s beliefs over time and apply them to its decision-
making. As the defender receives observations from 
the environment of the attacker’s activity, the 
defender will need to use this information to model 
the state of the attacker in its game tree and to esti-
mate the attacker’s perceived payoffs. With knowl-
edge of the current game tree and evaluation of like-
ly attacker beliefs, the defender can now 
autonomously select a response that will manipulate 

Articles

60    AI MAGAZINE

Figure 6. Traditional Defenses. 

Improving traditional defenses increases attacker risk due to increased likelihood of detection and increased costs for attacks. 
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Figure 7. Resilience Mechanisms. 

If the defender incorporates additional resilience mechanisms, then defender risk also decreases. 
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the gameboard to change the actual payoffs associat-
ed with the next possible actions. This is an iterative 
process where the defender must continuously learn 
about the attacker through observation and update 
its models and evolve its strategies accordingly. The 
decisions made and deceptive actions taken by the 
defender both manipulate the payoffs the attacker 
can receive and limit the strategies available to the 
attacker at the next time step. This kind of 
autonomous reasoning for cyber deception can gen-
eralize to autonomous cyber defense, though both 
are still in the early stages of research. 

In conclusion, we have described how traditional 
game theory can be extended to provide practical 
guidance for cyber defense scenarios. We have also 
provided arguments for why a cyber defender should 
be making use of cyber deception as a principle strat-
egy for defending systems. We framed our problem 
statement with a discussion of the asymmetric 
advantage that attackers enjoy in traditional cyber 
environments. We argue that the asymmetry arises 
not only from the legal and the ethical challenges of 
defenders, but also from a reticence to use deception 
in the implementation of defensive strategies. Final-
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Figure 8. Deception. 

A defender using deception can gain an advantage over the attacker, greatly increasing the risk to attackers due to detection 
or even retaliation by defenders. 
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Figure 9. Counter Deception. 

A defender using counterdeception also properly contends with deceiving attackers, further decreasing defender risk.
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ly, we present a notional view of how we believe that 
cyber deception can improve defender advantage. 
Figures 5–8 describe the effects of various strategies: 
improving traditional defense mechanisms (figure 5), 
incorporating resilience (figure 6), employing defen-
sive cyber deception (figure 7), and finally using 
counterdeception to thwart attacker deceptions (fig-
ure 8). The mechanisms in figures 5 and 6 are already 
common tools used by defenders, but they get us 
only part of the way to shifting the advantage to 
defenders. In our perspective, cyber deception and 
counterdeception are key elements of a successful 
cyber defense strategy and necessary for any well-rea-
soned approach to the defense of networks and net-
worked systems. To force attackers to suffer the same 
disadvantage as defenders do, we must employ many 
of the same basic techniques. Just as the attacker’s 
goals, their techniques, or their very existence is 
often unknown to a defender, we must make our crit-
ical information systems equally opaque. 
 

References 
Axelrod, R., and Hamilton, W. D. 1981. The Evolution of 
Cooperation. Science 211(4489): 1390–96. doi.org/10.1126/ 
science.7466396. 
Bilinski, M.; Gabrys, R.; and Mauger, J. 2018. Optimal Place-
ment of Honeypots for Network Defense. Paper presented at 
the Conference on Decision and Game Theory for Security. 
Seattle, WA, October 29–31. 
Ferguson-Walter, K. J.; Fugate, S.; Mauger, J.; and Major, M. 
2018. Game Theory for Adaptive Defensive Cyber Deception. 
Technical Report 3141. San Diego, CA: US Navy SPAWAR 
Systems Center Pacific. 
Ferguson-Walter, K. J.; LaFon, D. S.; and Shade, T. B. 2017. 
Friend or Faux: Deception for Cyber Defense. Journal of 
Information Warfare 16(2): 28–42. 
Fugate, S. 2012. Methods for Speculatively Bootstrapping 
Better Intrusion Detection System Performance. PhD disser-
tation, Department of Computer Science, University of New 
Mexico, Albuquerque, NM. 
Gutzwiller, R.; Ferguson-Walter, K.; Fugate, S.; and Rogers, A. 
2018. “Oh, Look, a Butterfly!” A Framework for Distracting 
Attackers to Improve Cyber Defense. Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting 62(1): 
272–76. doi.org/10.1177/1541931218621063. 
Heckman, K. E.; Stech, F. J.; Thomas, R. K.; Schmoker, B.; 
and Tsow, A. W. 2015. Cyber Denial, Deception and Counter 
Deception: A Framework for Supporting Active Cyber Defense. 
Advances in Information Security 64. Cham: Springer. doi. 
org/10.1007/978-3-319-25133-2. 
Kovach, N. S.; Gibson, A. S.; and Lamont, G. B. 2015. Hyper-
game Theory: A Model for Conflict, Misperception, and 
Deception. Game Theory 2015(2): 1–20. doi.org/10.1155/ 
2015/570639. 
Nash, J. F. 1951. Non-Cooperative Games. In Annals of 
Mathematics 54: 286–95.  
Poundstone, W. 1992. Prisoner’s Dilemma. New York: Dou-
bleday. 
Rowe, N. C., and Rrushi, J. 2016. Introduction to Cyberdecep-
tion. Berlin: Springer. doi.org/10.1007/978-3-319-41187-3. 

Roy, S.; Ellis, C.; Shiva, S.; Dasgupta, D.; Shandilya, V.; and 
Wu, Q. 2010. A Survey of Game Theory as Applied to Net-
work Security. In 43rd Hawaii International Conference on Sys-
tem Sciences, 1–10. IEEE. doi.org/10.1109/HICSS.2010.35. 
Spaan, M. T. J. 2012. Partially Observable Markov Decision 
Processes. In Reinforcement Learning, edited by M. Wiering 
and M. van Otterlo, 387–414. Adaptation, Learning, and 
Optimization 12. Berlin: Springer. doi.org/10.1007/978-3-
642-27645-3_12. 
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: 
An Introduction. Cambridge, MA: The MIT Press.  
von Neumann, J. 1928. Zur Theorie der Gexellschaftsspiele. 
In Annals of Mathematics 100: 195–320. doi.org/10.1007/ 
978-3-642-12586-7. 
von Stackelberg, H.; Bazin, D.; Urch, L.; and Hill, R. 2011. 
Market Structure and Equilibrium. Berlin: Springer.  
Whaley, B. 1969. Stratagem: Deception and Surprise in War. 
Cambridge, MA: Artech House. 
 

Sunny Fugate is a senior research scientist for the US Navy’s 
SPAWAR System Center, Pacific and the center’s senior sci-
entific technical manager (SSTM) for cyber warfare. During 
the last 16 years, Fugate has run numerous research pro-
grams to explore the intersections of cyber defense, cogni-
tive science, game theory, and artificial intelligence. Fugate 
earned a BS in electrical engineering from the University of 
Nevada in 2002 and a PhD in computer science at the Uni-
versity of New Mexico in 2012. Fugate’s current efforts are 
focused on improving the human factors of cyber defense 
and exploring opportunities to improve cyber defense using 
defensive deception and game theory.  

Kimberly Ferguson-Walter is a senior research scientist 
with the US National Security Agency’s Information Assur-
ance Research Group. She earned a BS in information and 
computer science from the University of California, Irvine, 
and an MS in computer science from the University of Mas-
sachusetts, Amherst, both specializing in artificial intelli-
gence. She is currently a PhD candidate at the University of 
Massachusetts, Amherst, with a focus on adaptive cyberse-
curity. Her research interests are focused on the intersection 
of computer science and human behavior. She has been 
focused on adaptive cybersecurity at the agency for the past 
eight years and is the lead for the Research Directorate’s 
deception for cyber defense effort. She is currently on joint-
duty assignment to SPAWAR Systems Center, Pacific to per-
form collaborative research and facilitate strategic align-
ment and technology transfers. 

Articles

62    AI MAGAZINE


