
Intelligent systems have the ability to adapt and general-
ize quickly in the presence of change and uncertainty in
their environments. Fundamentally, the success of their

adaptation and learning strategies hinges on the quality of
their representations. Simon (1969, 132), in fact, argued that
“[s]olving a problem simply means representing it so as to
make the solution transparent.”

Building good representations is a challenge of long stand-
ing in artificial intelligence. In this article, we examine this
problem in the context of reinforcement learning, the learn-
ing paradigm in which an agent interacts with its environ-
ment by making observations, choosing actions, and receiv-
ing feedback in the form of a numerical reward. The goal of
the agent is to maximize an expected cumulative measure
over the rewards. Since the environment might be enormous
(as in the case of the game of Go, for example), and the
reward may be sparse, a good representation needs to gener-
alize well not only over observations (or perceptions) but
additionally over multiple time scales.

Articles

SPRING 2018 39Copyright © 2018, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Constructing Temporal
Abstractions Autonomously
in Reinforcement Learning

Pierre-Luc Bacon, Doina Precup

� The idea of temporal abstraction,
that is, learning, planning, and repre-
senting the world at multiple time
scales, has been a constant thread in AI
research, spanning subfields from clas-
sical planning and search, to control
and reinforcement learning. While tem-
poral abstraction is a very natural con-
cept, learning these abstractions with-
out human input has proved quite
daunting. In this paper, we present a
general architecture called option-critic
for learning temporal abstractions end
to end from the agent’s experience. This
approach allows for continual learning
and provides interesting qualitative and
quantitative results in several tasks.

Over time, notable progress has been made in the
realm of perceptual generalization. For example, the
celebrated TD-Gammon (Tesauro 1995) program
achieved unprecedented performance against a
human backgammon champion by using a combi-
nation of reinforcement learning techniques and a
two-layer neural network. Recent advances in deep
neural networks have led to even more impressive
demonstrations of this ability in tasks such as wager-
ing the daily double (Tesauro et al. 2013), playing
Atari (Mnih et al. 2015), and playing Go (Silver et al.
2016). In all these cases, the system is given the
responsibility of building its own representation by
leveraging data.

The problem of building good generalizations of
actions over multiple time scales, otherwise known
as temporal abstraction, has also received a steady
influx of attention across different subfields of artifi-
cial intelligence (Minsky 1961; Fikes, Hart, and Nils-
son 1972; Kuipers 1979; Korf 1983; Iba 1989; Dresch-
er 1991; Dayan and Hinton 1992; Kaelbling 1993;
Dean and Lin 1995; Sutton, Precup, and Singh 1999).
Even in the early stages of AI, Minsky (1961, 10) rec-
ognized how “[…] we rarely solve a tricky problem by
a steady climb toward success,” making a hierarchical
approach to problem solving more likely to subtend
our intellectual abilities. This organization of knowl-
edge gives a system the ability to choose the right lev-
el of abstraction for a problem. As a consequence,
progress made at one level may appear as a stroke of
insight (Minsky 1961) from the level above.

Systems with insight — the capacity to gain an
accurate and deep intuitive understanding of a prob-
lem — (Oxford English Dictionary) have the flexibility
to reason and learn beyond the confines of the
knowledge provided to them a priori. Such systems
are habile (Nilsson 1995). In contrast, performance sys-
tems (Nilsson 1995) are designed for specific prob-
lems. While they may achieve superhuman perform-
ance, they lack general autonomy and competency.

We have been pursuing the goal of temporal
abstraction for building habile systems, which means
that a learner should not just represent its knowledge
at given time scales, but also automatically figure out
which time scales are interesting for both prediction
and control. The problem of knowledge representa-
tion at multiple scales can be handled in reinforce-
ment learning systems through the framework of
options (Sutton, Precup, and Singh 1999). Generally
speaking, options encapsulate behaviors that can be
initiated and terminated, akin to subroutines in a
programming language. Planning with given
options, as well as learning options that achieve pre-
specified subgoals, is well understood. However, the
problem of option discovery — figuring out a good
set of options fully automatically — has proven very
hard to handle so far. A possible reason for this
impasse is the attention put on allowing program
designers to specify what is interesting problem

structure. The resulting programs are akin to Nils-
son’s performance systems: they do well on certain
tasks, but are often too brittle to deploy widely or
scale up.

In this article, we describe the option-critic archi-
tecture, which is our attempt to take the step towards
more habile systems. The idea that a learning system
should be in charge of finding the options that are
suitable for itself, given its environment, is the core
principle of this work. We wish to allow the agent to
continually learn and adapt its representation at all
abstraction levels, based solely on the data stream it
observes, without requiring biasing information
from a human designer. Our approach builds on the
actor-critic architecture (Sutton 1984), which pro-
vides an incremental, online, and model-free
approach to learning from a continual stream of
experience. Unlike other previous or existing meth-
ods, the option-critic architecture requires no sub-
goals, pseudorewards, decomposition, or demonstra-
tions, and it constructs options fully autonomously
while embedded in a control task that has to be
solved at the same time.

This article is an overview of the conceptual and
technical aspects of our approach. We start with a
brief review of reinforcement learning and a formal-
ization of the concept of temporally extended
actions. We then describe the options framework, but
take a detour along the way to appreciate its roots in
constructivism (Drescher 1991). This perspective pro-
vides the properties sought in our system, which we
achieve using ideas that stem from actor-critic meth-
ods. Finally, we demonstrate an option-critic system
built over a deep network that is capable of learning
to play Atari games and of constructing interesting
options at the same time.

Reinforcement Learning
Reinforcement learning (RL) refers to learning from
the experience generated by an agent interacting
with its environment. Conceptually, the field has
been inspired by the work on trial-and-error learning
from psychology, but its methods were formalized
and analyzed using the theory of Markov decision
processes (MDPs). An MDP consists of a set of states
(modeling the agent’s perceptions) and a set of
actions. For each state-action pair, there is a well-
defined transition probability distribution from
which the next state will be drawn. The reward func-
tion specifies, for each state-action pair, an immedi-
ate numerical reward that will be received by the
agent. While the transition and reward functions are
assumed to exist, the agent does not have access to
them. Instead, it interacts with the environment by
observing states, choosing actions, and observing the
resulting rewards and next states. A sequence of
states, actions, and rewards generated in this manner
is called a trajectory.

Articles

40 AI MAGAZINE

Articles

SPRING 2018 41

The agent will typically seek a way of choosing
actions, conditioned on states, that is rewarding in
the long run. Such a stochastic decision procedure is
called a policy (denoted by π). Rather than simply
maximizing the total reward, which may not be
bounded in general, the agent usually attempts to
maximize discounted returns. The discount factor γ
can be conceptualized as an inflation rate that dep-
recates rewards at every time step.

In the policy evaluation problem, the goal is to
compute the expected discounted return for a given,
fixed policy over the distribution of possible trajec-
tories. This information is summarized in a value
function:

In the control problem, the goal is to find a policy
that maximizes the expected return.

A natural approach to these problems for agents
that are continually acting and learning is temporal
difference (TD) learning, introduced by Sutton (1984,
1988) in the context of policy evaluation, and later
adapted for control through the Q-learning (Watkins
1989) and Sarsa (Rummery and Niranjan 1994) algo-
rithms. For the policy evaluation case, the core idea
is that, after learning has completed, the value of a
state should be equal, in expectation, to the reward
plus the discounted value of the next state. The tem-
poral difference error quantifies how different the
estimated value of a state is at the current time step,
compared to one time step later (when a new sample
transition and reward have been observed). The algo-
rithm uses this error to train an approximation of vπ.
In the case of control, this idea is supplemented with
a simple strategy for changing the policy π over time:
actions that lead to better-than-expected outcomes
should be taken more often (that is, reinforced).

Actions with Variable Duration
With the modern foundations of learning through
reinforcement established by the end of the 1980s, a
number of proposals were made to extend the scope
of reinforcement learning methods from actions of
fixed duration to actions temporally extended
(Watkins 1989; Singh 1992; Dayan and Hinton 1992;
Kaelbling 1993; Thrun and Schwartz 1995; Sutton
1995), culminating at the end of the ’90s (Parr and
Russell 1998; Hauskrecht et al. 1998; Dietterich 1998;
Sutton, Precup, and Singh 1999) with several formu-
lations based on semi-Markov decision processes
(SMDP) (Howard 1963).

The MDP model makes the assumption that the
environment transitions to a new state in a single
time step (or, equivalently, in a constant amount of
time), while in an SMDP, the transition duration is a
random variable. The SMDP framework is therefore a
natural fit for representing temporally abstract

v� (s) = E� � t

t=0

�

� r(St ,At)|S0 = s
�

�
�

�

�
	

actions, which can persist over time. More precisely,
in an SMDP, the choice of action at a given state
induces a joint probability distribution over both the
next state and the duration of the transition. Hence,
a trajectory in an SMDP includes, in addition to
states, actions, and rewards, the duration of each
transition. The name semi-Markov stems from the fact
that the process is only assumed to be Markovian
from decision point to decision point, which conve-
niently allows for existing dynamic programming
results to apply at the level of decisions (or action
choices). However, the evolution of the system
between two decisions may not even be Markovian,
and it is also allowed to unfold over continuous time.
In fact, when the transition duration is exponential-
ly distributed, this leads to a decision process called
continuous-time Markov decision process (CTMDP) (Put-
erman 1994).

Seeing Through the
Black Box with Options

Despite adopting the same SMDP formalism, the
options framework (Sutton, Precup, and Singh 1999)
differs from its contemporaries (Parr and Russell
1998; Dietterich 1998) in its emphasis on exposing
and leveraging the structure both within and over
temporally extended actions. The evolution of the
process between two decision points is no longer a
black box, which means it can be both observed and
controlled. The ability to seamlessly learn and plan at
different levels of abstraction stems from the assump-
tion that there exists a base MDP that is overlaid with
temporally extended actions, known as options: the
combination is shown to induce an SMDP. With the
expression “between MDPs and semi-MDPs” in the
title of their paper, Sutton, Precup, and Singh (1999)
tried to convey the idea that options provide a lens
of variable resolution.

An option is a combination of three components:
an initiation set, a policy (sometimes called internal),
and a termination condition. The initiation set Io for
an option o is a subset of the states in which the giv-
en option could be chosen. In the most common
execution model, when an option is executed, its
internal policy πo acts until the probabilistic termi-
nation condition βo is met. More precisely, upon
entering the next state St+1, the system has to toss a
coin, which indicates termination with probability
βo(St+1) and continuation with 1 – βo(St+1). Once an
option has terminated, a policy over options μ choos-
es a new option, and the process is repeated.

Constructivist Influence
To get some perspective on what the options frame-
work is and what it ought to be, it is useful to follow
its lineage into the schema mechanism of Drescher
(1991). Inspired by Piaget’s constructivism (Piaget
1937), Drescher puts forward the idea that all knowl-

edge acquired by an agent is represented in terms of
its own experience with the sensation of its actions in
the environment. A schema, whose semantics have
much in common with options, is a symbolic struc-
ture that describes the result of an action given a con-
text. The role of a schema goes beyond the simple
specification of actions and can be used to express
general knowledge about the environment. For
example, a robot might choose to represent the fact
that a charger is in front of it based on its own pre-
diction of what would happen if it were to dock (Sut-
ton 2012). It might also choose to represent the pres-
ence of humans based on the predicted sensory
inputs that would typically follow the playback of its
bebeep boop sounds and dance sequence in the
morning.

This idea of building representations of the world
grounded in predictions about the outcome of tem-
porally abstract actions has informed the develop-
ment of the options framework. Building on an ear-
lier line of work (Sutton 1995; Precup and Sutton
1997; Precup, Sutton, and Singh 1998), Sutton, Pre-
cup, and Singh (1999) showed that predictions about
the expected return, the future state, and the dura-
tion of an option could be used for planning. Like
simple actions, options have associated reward and
transition models, which can be used in a set of Bell-
man equations at the SMDP level and whose solution
can be found by dynamic programming methods.
Options and their models, then, play a representa-
tional role in the sense of Drescher (1991): they are
agent-centric and encode meaning over action-con-
ditional predictions.

A Multifaceted Framework
Looking beyond the purely constructivist perspec-
tive, thinking about options in isolation from their
models has also been of practical interest. Rather
than choosing actions after reasoning in a predictive
representation, options can interact directly with the
environment. This direct interaction leads to what
we call the execution perspective on options. Here, an
option is more procedural in nature and acts as a data
structure for expressing action choices. Using com-
puter program execution as an analogy, an option is
akin to a function executed within a program in a
call-and-return fashion: its instructions are read (pol-
icy of an option), they are moved to the CPU (envi-
ronment), and when the option terminates, the next
function is loaded (initiated) from the call stack
along with its arguments. Complex control flows can
be generated in this manner and a generalization to
deeper hierarchies follows naturally.

Fundamentally, it is the need for remembering
which option is currently executing that leads to the
concept of a stack. The content of the stack is also
where we draw a line between Markov options and
semi-Markov options. In the simplest case, the stack
for Markov options is of constant size because it

holds exclusively the identity of the current option:
a single integer variable is sufficient for implementa-
tion. For example, we can imagine a robot navigation
task for which a good Markov option might be: “if
there is no obstacle” (initiation set), “move forward”
(the policy of that option) “until the charger is
reached” (termination condition). However, if we
were to also specify that the robot should stop search-
ing for the charger after some time, the correspon-
ding option would be semi-Markovian. In fact, the
need to actively keep track of time creates a depend-
ence on the history since initiation (unless timing
information is included in the state space). An option
is therefore Markovian if its behavior depends only
on the current state and not on any measurements of
the history since its initiation. The restriction to
Markov options leads to the powerful idea of intra-
option learning (Sutton, Precup, and Singh 1998),
which has no analogue in the semi-Markov case.
Both the Markov option property and the intra-
option formulation are central to our approach for
learning options.

The Bottleneck Concept
Learning and planning with options has been well
understood since Sutton, Precup, and Singh (1999). If
the options are prespecified, then dynamic program-
ming or temporal difference learning methods can be
used to learn about option values and models. How-
ever, the problem of discovering useful options auto-
matically is still difficult to tackle. The challenge
comes on two fronts: defining what useful or good
options mean, and designing algorithms for finding
those options.

An important contribution to the discovery prob-
lem in the context of classical macroactions came
from Iba (1989) and his peak-to-peak heuristic,
inspired by the concept of chunking (Mayzner and
Gabriel 1963) from psychology. The premise of this
work is that pairs of peaks in the evaluation function
should provide useful demarcations for where tem-
porally extended actions should start and end. Based
on the same intuition, Konidaris and Barto (2009)
and later Niekum et al. (2012) framed option discov-
ery as a change-point detection problem from expert
demonstrations.

This idea of peaks is also related to bottleneck
states (McGovern and Barto 2001; Stolle and Precup
2002), states that occur more frequently on success-
ful trajectories through the environment. Bottleneck
states, like peaks, are intuitively associated with
breakthroughs in the solution. Consider a goal-
directed navigation task in an environment contain-
ing rooms and doorways. If the agent is starting in a
separate room from the goal, doorways would neces-
sarily be crossed on successful trajectories and should
therefore be useful subgoals.

Many graph-theoretic formulations of the bottle-

Articles

42 AI MAGAZINE

neck concept have been proposed over the years. For
example, Simsek and Barto (2008) chose the notion
of betweenness centrality (Freeman 1977), which
bases a measure of importance for a vertex on the rel-
ative number of shortest paths passing through it.
Alternatively, graph-partitioning ideas have often
been used to define options around the bottleneck
states at the boundary of each partition (Dean and
Lin 1995; Menache, Mannor, and Shimkin 2002;
Simsek, Wolfe, and Barto 2005; Botvinick, Niv, and
Barto 2009; Chaganty, Gaur, and Ravindran 2012;
Bouvrie and Maggioni 2012; Bacon 2013; Krishna-
murthy et al. 2016; Machado, Bellemare, and Bowl-
ing 2017).

The bottleneck concept can be challenging to turn
into practical and scalable algorithms. One impor-
tant reason is the need for vast quantities of data
(sometimes expert data, which is hard to obtain).
Moreover, in the graph-theoretic formulation, the
underlying state connectivity graph of the MDP must
be approximated first, before the search for bottle-
necks. While some progress has been made recently
(Machado, Bellemare, and Bowling 2017), the
approximation step often renders the graph perspec-
tive incompatible with online implementations over
continuous spaces.

Desiderata
In our work on the discovery problem, a liberating
decision has been to momentarily give the word dis-
covery a break in order to refocus our attention on
learning. After all, as reinforcement learning
researchers, learning is what gets us up in the morn-
ing after coffee … and that seemingly innocuous
change from discovering options to learning options
had a significant impact on our understanding of the
problem and the kind of properties that our algo-
rithms should have.

The terminology of learning options had also been
used in the past, but mostly in the context of subgoal
(Sutton, Precup, and Singh 1999) or pseudo-reward
(Dietterich 1998) methods, which allow for leverag-
ing such external information in order to learn the
policies and termination conditions of options, by
treating each option as an MDP on its own. Given
that the environment allows for arbitrary resets, the
policy of an option would be initialized within its
initiation set and executed until its termination con-
dition was met. This approach leads to a process that
separates learning the internal information for the
options both from learning the policy over options
and from learning useful subgoals or pseudo-reward
functions.

Our desire to avoid this kind of partitioned learn-
ing led us to embrace a more integrative and contin-
ual perspective. We asked ourselves, Wouldn’t it be
possible to learn, at all times, the elements of all
options and the policy governing them? This way of

thinking also allows us to consider the question of
optimality of a set of options. This issue is especially
apparent in the subgoal and reward settings, and per-
tains to the fact that locally optimal options may not
lead to optimality of the overall system (Minsky
1961; Watkins 1989; Dietterich 2000). Thus, we
wanted to address this mismatch by learning options
that were aligned with a well-defined objective for
the system as a whole.

The end-to-end perspective not only provides this
alignment with a given objective, but also puts learn-
ing in the hands of the system. We are thereby
strengthening the meaning of options as internal
abstractions belonging exclusively to an agent, and
not to the environment, as latent variables: that is,
options play a subjective role (Tanner et al. 2007; Sut-
ton 2012). In this sense, the study of options is
intrinsically phenomenological and as once
expressed by Stanislaw Ulam:

[…] what you are describing is not an object, but a
function, a role that is inextricably tied to some con-
text. Take away the context, and the meaning also dis-
appears. (Rota 1986, 2)

Pushing the responsibility of learning good
options to the agent was also a way to prevent our-
selves from biasing towards the kind of options that
we thought the system should have. Specifically, we
wanted to explore beyond bottleneck options, letting
options emerge from learning only if deemed useful
by the agent. Araújo and Davids (2011) argue that
ascribing behavior externally in terms of personal
features rather than within the agent-environment
relation causes an organismic asymmetry and a lost
sense of private (Sutton 2012) directed purpose with-
in the agent. In order to bring the balance back, a
switch must be made from viewing options as exter-
nal symbolic objects to viewing them in a way that
emphasizes their functional relationship within a
system and its environment. Option discovery then
becomes more a process of attenuation and adapta-
tion (Araújo and Davids 2011) to the key properties
of the environment.

An Architecture
for Learning Options

The actor-critic architecture (Sutton 1984) lends itself
naturally to our continual learning perspective,
because it is capable of leveraging the same stream of
experience not only to learn about values, but also to
update a policy that has its own separate parameter-
ization. Furthermore, actor-critic architectures can be
implemented in a fully incremental fashion (Sutton
1984; Sutton et al. 1999), learning at all times. This
architecture is also compatible with the average
reward formulation (Puterman 1994) in the continu-
ing (nonepisodic) setting (Sutton and Barto 1998).

The actor-critic approach is similar to policy itera-
tion (Puterman 1994) in the sense that they both

Articles

SPRING 2018 43

decouple the problem of policy evaluation in the crit-
ic from improvement of a policy in the actor. This
separation of concerns between the specification of
an objective and the means to achieve it is a power-
ful concept that eases our alignment goal: the ability

to set an optimization target and to learn the right
solution accordingly. Another benefit of the actor-
critic approach is the flexibility in choosing the class
of policies represented in the actor. Using a combi-
nation of randomized policies and approximate val-
ue function, it is possible to seamlessly handle con-
tinuous spaces of actions and states.

Given any differentiable parameterization of a ran-
domized policy, the policy gradient theorem (Sutton
et al. 1999; Konda and Tsitsiklis 2000) provides an
expression for the gradient of either the expected dis-
counted return or the average reward criterion with
respect to the parameters of the policy. The main
result can be stated rather simply: if an action is
good, the policy gradient will update parameters to
make that action more likely to be chosen again. The
determination of whether an action was good is
where the critic intervenes using value estimates. In
an actor-critic architecture, the action values are
learned in the critic in parallel with the policy
updates. Figure 1 shows an actor-critic architecture
with policy gradient updates and temporal difference
learning in the critic.

The option-critic architecture of figure 2 is our
adaptation (Bacon, Harb, and Precup 2017) of the
actor-critic architecture for learning Markov options
end to end by stochastic gradient ascent. As in regu-
lar policy gradient methods, we require the option
policies to be represented by differentiable random-
ized policies. Similarly, the termination conditions
need to be randomized, and the chosen parameteri-
zation must be differentiable. Therefore, we prefer to
refer to termination conditions with parameters as
simply termination functions.

Theoretical Results
Due to the requirements of our system, we cannot
directly apply the policy gradient theorem to learn
parameterized options, because working with
options brings us to the SMDP framework. Yet work-
ing only at the SMDP level prevents us from consid-
ering the structure within an option, where the poli-
cy of an option is executing. We addressed this
problem by using Markov options and by adopting
the intra-option learning perspective (Sutton, Pre-
cup, and Singh 1999). As a consequence, the Markov
property could be recovered both over actions and
over state-option pairs.

The first step towards deriving gradient theorems
for options was to describe precisely (Bacon, Harb,
and Precup 2017) the probabilistic structure of the
Markov chain, which takes the memory (stack) into
account. We focused on a Markov chain over an aug-
mented space, consisting of states, the option that is
executing (in other words, the content of the stack),
and the primitive action choice. It then sufficed to
apply standard calculus tools in this chain, in order
to derive gradients for the policy of an option and its
termination function.

Articles

44 AI MAGAZINE

Figure 1. The Original Actor-Critic Architecture.

Value
function

Environment

Policy

ActionState

Actor

Reward

Gradient

Critic
TD error

Figure 2. Our Proposed Option-Critic Architecture.

μθ

Qθ,Aθ

Environment

ActionState

πθ,βθ

Reward

Gradients

Critic TD error

Selected
OptionOptions

Policy over Options

In the gradient theorem for option policies, the
interpretation for the original policy gradient theo-
rem is maintained: if an action chosen within an
option is useful, the gradient update will make it
more likely to be picked again in the same state. This
result also provides the global optimality property
that we initially required. In fact, the effect of con-
sidering the choice of option as part of the state space
results in a critic that provides estimates of the
expected discounted return for the system as a
whole, given that an action is taken in a certain state
and under a certain option. Therefore, the gradient
for option policies takes into account how a local
change in the choice of actions would impact per-
formance of the entire system.

The gradient theorem for termination functions
also has a clear interpretation, but involves a differ-
ent critic feedback than for option policies. The ter-
mination gradient makes an option more likely to
terminate if there is no longer an advantage in fol-
lowing it. Conversely, if committing to an option is
deemed advantageous by the critic, its probability of
terminating should be decreased, so as to lengthen
that option. The expression advantageous, loosely
used up to now, is defined precisely in terms of the
advantage function (Baird 1993): the difference
between the value of a given option at a state and the
expected value over all options. Interestingly, the ter-
mination gradient theorem for options can be seen as
another instantiation of the interruption execution
model (Sutton, Precup, and Singh 1999), whereby
the policy over options commits to an option unless
a better one can be taken.

Deep Options
In addition to options, a state representation can also
be learned end to end using the option-critic archi-
tecture. With the Arcade Learning Environment

(ALE) (Bellemare et al. 2013) in mind, we designed a
parameterization based on the deep network archi-
tecture of the DQN algorithm (Mnih et al. 2015).
Because in this environment the agent observes
images, the first few layers of the network (figure 3)
apply convolutions to a concatenation of the last
four frames. In the penultimate layer, the high-level
visual features extracted are combined in a shared
representation across all options, termination func-
tions, and value outputs.

While we could have chosen to also parameterize
the policy over options, we decided to use an epsilon-
greedy (Sutton and Barto 1998) policy over options
derived from the value outputs. Therefore, the stream
of computation going from input to value output,
and epsilon-greedy policy, mirror the same design as
DQN. However, the second path of computation
ending in the option policies and termination func-
tions necessitates randomization, according to the
gradient theorems for options. Because the action
space is discrete, we chose softmax (Sutton et al.
1999) for the option policies and sigmoids for the ter-
mination functions.

Different kinds of parameter updates are also nec-
essary in each of the two streams. For the value
updates and control over options, we used the idea of
a target network from DQN, but in combination with
intra-option Q-learning (Sutton, Precup, and Singh
1999) instead of Q-learning (Watkins 1989). By freez-
ing the network for a fixed interval, the target for the
value updates becomes more stationary and learning
is more stable. We computed both kinds of updates at
every step with samples coming from two different
sources: from an experience replay buffer (Lin 1992)
for learning values, and from fresh online samples for
the options updates. The reason for not using
replayed samples with option gradients (or policy
gradients in general) was to ensure that our gradient
estimates would truly come from the distribution of

Articles

SPRING 2018 45

Figure 3. Network Architecture for Option-Critic in the ALE Environment.

Policy over options

Termination functions

Internal policies

Shared
representation

Convolutional
layers

Last 4
frames

interest: the stationary distribution of the online
process.

From Zero to Options: Results in ALE
Could we learn from scratch, and within a single
task, a set of options and the corresponding state rep-
resentation and policy over options within a single
task? We set out to answer this question in four rep-
resentative tasks of the ALE domain : Asterix, Ms.
Pacman, Seaquest, and Zaxxon. Even for simple grid
environments, discovering options with complete
autonomy used to require excessively large amounts
of data and computation, or some form of prior expe-
rience in related tasks. Hence, learning options in
ALE without any prespecification other than the goal
of maximizing the discounted return would be a for-
midable challenge.

Despite the complexity of this endeavour, the
combination of option-critic and our deep architec-

ture outperformed the best reported DQN perform-
ance (figure 4) for the same total number of frames in
the games Asterix, Ms. Pacman, and Seaquest. It is
important to remember that all learning took place
entirely within the same task at a rate and computa-
tional cost comparable to DQN. Apart from the
option parameterization, the only parameter that we
had to provide to our system was the number of
desired options.

With the end-to-end approach underpinning the
option-critic architecture, the options the system dis-
covered were those it found useful for maximizing its
expected discounted return. When learning two
options in the game of Seaquest, the option-critic
found a particularly vivid solution structure. At the
SMDP level, typical trajectories show (figure 5) both
options being used in an alternating fashion for an
extended period each time. The partition of action
sequences between the options is revealing. One

Articles

46 AI MAGAZINE

Figure 4. Learning Results with Option-critic in the Arcade Learning Environment.

(b) Ms. Pacman

Option-Critic
DQN

Option-Critic
DQN

Av
er

ag
e

Sc
or

e
Av

er
ag

e
Sc

or
e

Epoch Epoch
0 0

0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

Option-Critic
DQN

Option-Critic
DQN

Epoch
0 20015010050

20015010050 20015010050

Epoch
20015010050

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

(a) Asterix

(d) Zaxxon(c) Seaquest

option specialized in action sequences going
upwards on the way to replenish the oxygen, while
the other executed only when descending below the
water surface. Because nothing is specified a priori
about options beyond the control objective, there is
no mechanistic explanation for how these specific
options came to be. However, we postulate that the
elementary memory structure of options might rep-
resent aspects of the game dynamics having to do
with oxygen management. When nearing low levels
of oxygen, the agent must resist the urge to replenish
the tank long enough to reach the surface. This
would be more difficult to represent in a purely reac-
tive fashion or without having recourse to temporal
abstraction.

Conclusion and Future Work
The option-critic architecture is based on the general
idea that the responsibility of learning should go to
the learner (Drescher 1991). Instead of requiring an
expert to make guesses about what aspects of the task
and environment might be useful for building
options, we let our system learn the right kind of
options for the task at hand directly from its stream
of experience. Building from the blueprints of policy
gradient methods, we provide gradient theorems for
options that allow their internal policies and termi-
nation conditions to be adjusted continually and
simultaneous in order to actually solve the task. If
desired, regularizers can also be added to this objec-
tive to make the system easily informable (Nilsson

1995). The option-critic architecture can then be
instantiated through different implementations of
the stochastic gradient ascent procedure associated
with these gradients.

In spite of the success of the option-critic approach
in Atari games, many questions have yet to be
answered. For example, a common problem observed
in practice is that, as the system becomes more pro-
ficient, the average duration of its options also tends
to decrease. Considering the fact that the option-crit-
ic learns options for maximizing the expected return,
this phenomenon is hardly surprising. From a pure
optimization perspective, options are indeed useless
for achieving optimal control: their optimal value
function cannot be greater than the optimal value
function of the MDP. As we also know, the optimal
value function in a discounted MDP is always attain-
able by a greedy policy using only primitive actions
(Puterman 1994). Hence, in a dynamic programming
setting, having long temporally extended actions
provides no benefit over primitive actions if optimal
control is the only goal.

To prevent options from collapsing to primitive
actions, we devised simple regularization strategies
that could be incorporated readily to the objective
without altering the learning architecture. For
instance, the approach used in the Atari games con-
sisted of adding a scalar margin to the advantage
function used in the termination gradient. Intuitive-
ly, the effect of this margin term was to set a baseline
of advantageousness in favor of maintaining the
same option. We can also think of the margin as a

Articles

SPRING 2018 47

Figure 5. Interpretable and Specialized Options Found in the Game of Seaquest.

Transition from option 1 to 2

Action trajectory, time

Option 2: Upward shooting sequenceOption 1: Downward shooting sequence

White: option 1 Black: option 2

cost for switching options or for deliberating too
long (Bacon and Precup 2015) — an interpretation
that finds its roots in the bounded rationality frame-
work (Simon 1957).

When departing from perfect rationality, bound-
edly rational systems are naturally pressured into
making use of the regularities of their environment.
When such systems are learning representations,
only the essential elements can be captured because
the resources — time, energy, computation, favorable
opportunities — are scarce. Evaluation platforms that
suitably reflect these conditions are not yet available
in reinforcement learning. However, we are hoping
to extend our experiments to a more naturalistic sce-
nario by learning in a continuing fashion rather than
in a single task.

From the bounded rationality perspective, provid-
ing “good enough” behavior at all times in an effi-
cient manner might be the raison d’être for options.
For example, consider a problem setting where the
world does not wait for a carefully thought out best
next action: maybe a rhinoceros is suddenly charg-
ing — no time to waste, acting is all that matters.
There is an inherent cost in nature, but also in artifi-
cial systems, for carrying out excessive computation.
Having options that are sufficiently temporally
extended seems to provide a balance between fast
decision making and high-level deliberative reason-
ing.

Initiation sets also provide a mechanism for man-
aging computation. We avoided working with them
in our option-critic approach, however, by making
the assumption that options are available every-
where. By their very nature, initiation sets are not
parameterized functions, so it is difficult to use our
usual optimization toolkit to learn them end to end,
as we did with termination functions. This problem
needs to be addressed by first redefining the concept
of initiation sets to initiation functions. Then, to
derive a policy gradient –like theorem for initiation
functions, we should also be capable of representing
termination functions using a randomized and dif-
ferentiable parameterization. In this case, the mean-
ing of randomized initiation functions would have
to be clarified in relation to the call-and-return exe-
cution model. Finally, we might need to enforce
compositional properties of options so as to avoid an
option terminating in a region of the state space
where no other options can be taken. It is not clear
at this point how this property could be tractably
enforced in our optimization objective.

Acknowledgements
We gratefully acknowledge the funding received for
this work from the Canadian National Science and
Engineering Research Council (NSERC) and the
Fonds de Recherche Quebecois – Nature et Technolo-
gie (FRQNT). We are very grateful to Jean Harb for the
experimental results presented here, to Genevieve

Fried for her feedback on this article, and to Rich Sut-
ton for many inspiring conversations on options.

References
Araújo, D., and Davids, K. 2011. What Exactly Is Acquired
During Skill Acquisition? Journal of Consciousness Studies
18(3–4): 7–23.

Bacon, P.-L. 2013. On the Bottleneck Concept for Options
Discovery: Theoretical Underpinnings and Extension in
Continuous State Spaces. Master’s thesis, Dept. of Comput-
er Science, McGill University.

Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The Option-Crit-
ic Architecture. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, 1726–1734. Palo Alto, CA:
AAAI Press.

Bacon, P.-L., and Precup, D. 2015. Learning with Options:
Just Deliberate and Relax. Paper presented at the NIPS
Bounded Optimality and Rational Metareasoning Work-
shop, Montréal, Québec, Canada, December 11.

Baird, L. C. 1993. Advantage Updating. Technical Report
WL–TR-93-1146, Wright Laboratory, Wright-Patterson Air
Force Base, OH.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelligence
Research 47(1): 253–279.

Botvinick, M. M.; Niv, Y.; and Barto, A. C. 2009. Hierarchical-
ly Organized Behavior and Its Neural Foundations: A Rein-
forcement Learning Perspective. Cognition 113(3): 262–280.
doi.org/10.1016/j.cognition.2008.08.011

Bouvrie, J. V., and Maggioni, M. 2012. Efficient Solution of
Markov Decision Problems with Multiscale Representations.
In 50th Annual Allerton Conference on Communication, Con-
trol, and Computing, 474–481. Piscataway, NJ: Institute for
Electrical and Electronics Engineers. doi.org/10.1109/Aller-
ton.2012.6483256

Chaganty, A. T.; Gaur, P.; and Ravindran, B. 2012. Learning
in a Small World. In Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS’12), volume 1, 391–397. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

Dayan, P., and Hinton, G. E. 1992. Feudal Reinforcement
Learning. In Advances in Neural Information Processing Sys-
tems 5, 271–278. San Francisco: Morgan Kaufmann.

Dean, T., and Lin, S.-H. 1995. Decomposition Techniques
for Planning in Stochastic Domains. In Proceedings of the
14th International Joint Conference on Artificial Intelligence
(IJCAI’95), volume 2, 1121–1127. San Francisco: Morgan
Kaufmann.

Dietterich, T. G. 1998. The MAXQ Method for Hierarchical
Reinforcement Learning. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learning (ICML’98), 118–126.
San Francisco: Morgan Kaufmann Publishers.

Dietterich, T. G. 2000. Hierarchical Reinforcement Learning
with the MAXQ Value Function Decomposition. Journal of
Artificial Intelligence Research 13: 227–303.

Drescher, G. L. 1991. Made-Up Minds: A Constructivist
Approach to Artificial Intelligence. Cambridge, MA: The MIT
Press.

Fikes, R.; Hart, P. E.; and Nilsson, N. J. 1972. Learning and

Articles

48 AI MAGAZINE

Executing Generalized Robot Plans. Artificial Intelligence
3(1–3): 251–288. doi.org/10.1016/0004-3702(72)90051-3

Freeman, L. C. 1977. A Set of Measures of Centrality Based
on Betweenness. Sociometry 40(1): 35–41. doi.org/10.2307/
3033543

Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T. L.;
and Boutilier, C. 1998. Hierarchical Solution of Markov
Decision Processes Using Macro-Actions. In Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI’98), 220–229. San Francisco: Morgan Kaufmann
Publishers.

Howard, R. A. 1963. Semi-Markovian Decision Processes.
Paper presented at the 34th Session of the International Sta-
tistical Institute, Ottawa, Ontario, Canada, August 21–29.

Iba, G. A. 1989. A Heuristic Approach to the Discovery of
Macro-Operators. Machine Learning 3: 285–317. doi.org/10.
1007/BF00116836

Kaelbling, L. P. 1993. Hierarchical Learning in Stochastic
Domains: Preliminary Results. In Machine Learning, Proceed-
ings of the Tenth International Conference, 167–173. San Fran-
cisco: Morgan Kaufmann Publishers.

Konda, V. R., and Tsitsiklis, J. N. 2000. Actor-Critic Algo-
rithms. In Advances in Neural Information Processing Systems
12, 1008–1014. Cambridge, MA: The MIT Press.

Konidaris, G., and Barto, A. G. 2009. Skill Discovery in Con-
tinuous Reinforcement Learning Domains Using Skill
Chaining. In Neural Information Processing Systems 22, 1015–
1023. Red Hook, NY: Curran Associates.

Korf, R. E. 1983. Learning to Solve Problems by Searching
for Macro-Operators. PhD dissertation, Carnegie Mellon
University, Pittsburgh, PA.

Krishnamurthy, R.; Lakshminarayanan, A. S.; Kumar, P.; and
Ravindran, B. 2016. Hierarchical Reinforcement Learning
Using Spatio-Temporal Abstractions and Deep Neural Net-
works. Unpublished MS. Computing Research Repository,
May 2016 CoRR Abs/1605.05359. New York: Association for
Computing Machinery.

Kuipers, B. 1979. Commonsense Knowledge of Space:
Learning from Experience. In Proceedings of the 6th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’79), vol-
ume 1, 499–501. San Francisco: Morgan Kaufmann Pub-
lishers Inc.

Lin, L.-J. 1992. Reinforcement Learning for Robots Using
Neural Networks. PhD dissertation, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA.

Machado, M. C.; Bellemare, M. G.; and Bowling, M. H.
2017. A Laplacian Framework for Option Discovery in Rein-
forcement Learning. In Proceedings of the 34th International
Conference on Machine Learning (ICML’17), 2295–2304.

Mayzner, M. S., and Gabriel, R. F. 1963. Information Chunk-
ing and Short-Term Retention. The Journal of Psychology
56(1): 161–164. doi.org/10.1080/00223980.1963.9923710

McGovern, A., and Barto, A. G. 2001. Automatic Discovery
of Subgoals in Reinforcement Learning Using Diverse Den-
sity. In Proceedings of the Eighteenth International Conference
on Machine Learning (ICML’01), 361–368. San Francisco:
Morgan Kaufmann Publishers Inc.

Menache, I.; Mannor, S.; and Shimkin, N. 2002. Q-Cut —
Dynamic Discovery of Sub-Goals in Reinforcement Learn-
ing. In Machine Learning: ECML 2002, Proceedings of the 13th
European Conference on Machine Learning. Lecture Notes in
Computer Science 2430, 295–306. Berlin: Springer.

Minsky, M. 1961. Steps Toward Artificial Intelligence. Pro-
ceedings of the IRE 49(1): 8–30. doi.org/10.1109/JRPROC.
1961.287775

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, a. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A.
K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-Level Control Through
Deep Reinforcement Learning. Nature 518(7540): 529–533.
doi.org/10.1038/nature14236

Niekum, S.; Osentoski, S.; Konidaris, G.; and Barto, A. G.
2012. Learning and Generalization of Complex Tasks from
Unstructured Demonstrations. In 2012 IEEE/RSJ Internation-
al Conference on Intelligent Robots and Systems, 5239–5246.
Piscataway, NJ: Institute for Electrical and Electronics Engi-
neers. doi.org/10.1109/IROS.2012.6386006

Nilsson, N. 1995. Eye on the Prize. AI Magazine 16(2): 9–17.

Parr, R., and Russell, S. J. 1998. Reinforcement Learning
with Hierarchies of Machines. In Jordan, M. I.; Kearns, M. J.;
and Solla, S. A., eds., Advances in Neural Information Process-
ing Systems 10, 1043–1049. Cambridge, MA: The MIT Press.

Piaget, J. 1937. La Construction du Réel chez L’Enfant. Paris:
Editions Delachaux and Niestlé S.A.

Precup, D., and Sutton, R. S. 1997. Multi-Time Models for
Temporally Abstract Planning. In Advances in Neural Infor-
mation Processing Systems 10, 1050–1056. Cambridge, MA:
The MIT Press. doi.org/10.1007/BFb0026709

Precup, D.; Sutton, R. S.; and Singh, S. P. 1998. Theoretical
Results on Reinforcement Learning with Temporally
Abstract Options. In Machine Learning: ECML-98, 10th Euro-
pean Conference on Machine Learning. Lecture Notes in Com-
puter Science 1398, 382–393. Berlin: Springer.

Puterman, M. L. 1994. Markov Decision Processes: Discrete Sto-
chastic Dynamic Programming. New York: John Wiley and
Sons. doi.org/10.1002/9780470316887

Rota, G.-C. 1986. In Memoriam of Stan Ulam — The Barri-
er of Meaning. Physica D: Nonlinear Phenomena 22(1): 1–3.
doi.org/10.1016/0167-2789(86)90228-9

Rummery, G. A., and Niranjan, M. 1994. On-Line Q-Learn-
ing Using Connectionist Systems. Technical Report 166,
Engineering Department, Cambridge University, Cam-
bridge, UK.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach,
M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D. 2016.
Mastering the Game of Go with Deep Neural Networks and
Tree Search. Nature 529(7587): 484–489. doi.org/10.1038/
nature16961

Simon, H. A. 1957. Models of Man, Social and Rational: Math-
ematical Essays on Rational Human Behavior in Society Setting.
New York: Wiley.

Simon, H. A. 1969. The Sciences of the Artificial. Cam-
bridge, MA: The MIT Press.

Simsek, Ö., and Barto, A. G. 2008. Skill Characterization
Based on Betweenness. In Advances in Neural Information
Processing 21: Proceedings of the 22nd Annual Conference,
1497–1504. Red Hook, NY: Curran Associates. doi.org/10.
1145/1102351.1102454

Simsek, O.; Wolfe, A. P.; and Barto, A. G. 2005. Identifying
Useful Subgoals in Reinforcement Learning by Local Graph

Articles

SPRING 2018 49

Articles

50 AI MAGAZINE

Please Join Us in Zürich, Switzerland
from July 5–8, 2018, for the

Sixth AAAI Conference on
Human Computation and
Crowdsourcing

humancomputation.com

Partitioning. In Proceedings of the 22nd International Confer-
ence on Machine Learning (ICML’05), 816–823. New York:
Association for Computing Machinery.

Singh, S. P. 1992. Reinforcement Learning with a Hierarchy
of Abstract Models. In Proceedings of the 10th National Con-
ference on Artificial Intelligence, 202–207. Menlo Park, CA:
AAAI Press.

Stolle, M., and Precup, D. 2002. Learning Options in Rein-
forcement Learning. In Abstraction, Reformulation and
Approximation, 5th International Symposium (SARA
2002). Lecture Notes in Computer Science 2371, 212–223.
Berlin: Springer. doi.org/10.1007/3-540-45622-8_16

Sutton, R. S. 1984. Temporal Credit Assignment in Rein-
forcement Learning. Ph.D. dissertation, University of Mas-
sachusetts Amherst.

Sutton, R. S. 1988. Learning to Predict by the Methods of
Temporal Differences. Machine Learning 3(1):9–44. doi.org/
10.1007/BF00115009

Sutton, R. S. 1995. TD Models: Modeling the World at a Mix-
ture of Time Scales. In Machine Learning, Proceedings of the
Twelfth International Conference on Machine Learning, 531–
539. Amsterdam, The Netherlands: Elsevier

Sutton, R. S. 2012. Beyond Reward: The Problem of Knowl-
edge and Data. In Inductive Logic Programming: 21st Interna-
tional Conference, 2–6. Berlin: Springer.

Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforce-
ment Learning. Cambridge, MA: The MIT Press.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour, Y.
1999. Policy Gradient Methods for Reinforcement Learning
with Function Approximation. In Advances in Neural Infor-
mation Processing Systems 12, 1057–1063. Cambridge, MA:
The MIT Press.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1998. Intra-Option
Learning About Temporally Abstract Actions. In Proceedings
of the Fifteenth International Conference on Machine Learning

(ICML’98), 556–564. San Francisco: Morgan Kaufmann.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPS and Semi-MDPS: A Framework for Temporal Abstrac-
tion in Reinforcement Learning. Artificial Intelligence 112(1-
2):181–211. doi.org/10.1016/S0004-3702(99)00052-1

Tanner, B.; Bulitko, V.; Koop, A.; and Paduraru, C. 2007.
Grounding Abstractions in Predictive State Representations.
In Proceedings of the 20th International Joint Conference on
Artifical Intelligence (IJCAI’07), 1077–1082. San Francisco,
CA: Morgan Kaufmann Publishers Inc.

Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon. Communications of the ACM 38(3):58–68.doi.org/
10.1145/203330.203343

Tesauro, G.; Gondek, D.; Lenchner, J.; Fan, J.; and Prager, J.
M. 2013. Analysis of Watson’s Strategies for Playing Jeop-
ardy! Journal of Artificial Intelligence Research 47: 205–251.

Thrun, S., and Schwartz, A. 1995. Finding Structure in Rein-
forcement Learning. In Advances in Neural Information Pro-
cessing Systems 7. Cambridge, MA: The MIT Press.

Watkins, C. 1989. Learning from Delayed Rewards. PhD dis-
sertation, King’s College, Cambridge, UK.

Pierre-Luc Bacon is a PhD candidate in the School of Com-
puter Science at McGill University, whose research interests
are in reinforcement learning. He received the Outstanding
Student Paper Award at AAAI’2017 for his work on the
option-critic architecture.

Doina Precup shares her time between McGill University,
where she codirects the Reasoning and Learning Lab, and
DeepMind Montreal. Her research interests are in machine
learning, especially reinforcement learning, reasoning and
planning under uncertainty, and applications of these
methods. She became a senior member of AAAI in 2015, a
Canada research chair in 2016, and a senior fellow of CIFAR
in 2017.

