
The first ever human versus computer no-limit Texas
hold ’em competition took place from April 24–May 8,
2015, at Rivers Casino in Pittsburgh, PA, organized by

Carnegie Mellon University Professor Tuomas Sandholm.
Twenty thousand hands of two-player no-limit Texas hold
’em were played between the computer program Claudico
and four of the top human specialists in this variation of pok-
er, Dong Kim, Jason Les, Bjorn Li, and Doug Polk (so 80,000
hands were played in total).

While this was the first human versus machine competi-
tion for the no-limit variant of Texas hold ’em, there had
been two prior competitions for the limit variant. Two-play-
er limit Texas hold ’em is the smallest poker variant played
competitively by humans. A breakthrough was achieved last
year as the game was “essentially weakly solved” (an ε-Nash
equilibrium was computed for such small ε to be statistically
indistinguishable from zero in a human lifetime of play) by
researchers at the University of Alberta (Bowling et al. 2015).
In the limit variant all bets are of a fixed size, while in no-lim-
it bets can be of any number of chips up to the amount
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n The first human versus computer no-
limit Texas hold ’em competition took
place from April 24–May 8, 2015, at
Rivers Casino in Pittsburgh, PA. In this
article I present my thoughts on the
competition design, agent architecture,
and lessons learned. Several problemat-
ic hands from the competition are high-
lighted that reveal the most glaring
weaknesses of the agent. The research
underlying the agent is placed within a
broader context in the AI research com-
munity, and several avenues for future
study are mapped out.



remaining in a player’s stack (the stacks are reset to a
fixed amount of 200 big blinds at the start of each
hand). Thus, the game tree for no-limit has a much
larger branching factor and is significantly larger;
there are 10165 nodes in the game tree for no-limit,
while there are around 1017 nodes for limit (Johanson
2013). In 2007 a program called Polaris that was cre-
ated by researchers at the University of Alberta played
four duplicate 500-hand matches against human pro-
fessionals. The program won one match, tied one,
and lost two, thus losing the match overall. In 2008
an improved version of Polaris competed against six
human professionals in a second match, this time
coming out victorious (three wins, two losses, and
one tie). There have also been highly-publicized
human versus machine competitions for other
games; for example, chess program Deep Blue lost to
human expert Garry Kasparov in 1996 and beat him
in 1997, and Jeopardy! agent Watson defeated human
champions in 2011.

Claudico is Latin for “I limp.” Limping is the name
of a specific play in poker. After the initial antes have
been paid, the first player to act is the small blind and
he has three available actions; fold (forfeit the pot),
call (match the big blind by putting in 50 chips
more), or raise by putting in additional chips beyond
those needed to call (a raise can be any integral
amount from 200 chips up to 20,000 chips in this sit-
uation). The second option of just calling is called
limping and has traditionally been viewed as a very
weak play only made by bad players. In one popular
book on strategy, Phil Gordon writes, 

Limping is for Losers. This is the most important fun-
damental in poker — for every game, for every tour-
nament, every stake: If you are the first player to vol-
untarily commit chips to the pot, open for a raise.
Limping is inevitably a losing play. If you see a person
at the table limping, you can be fairly sure he is a bad
player. Bottom line: If your hand is worth playing, it is
worth raising (Gordon 2011). 

Claudico actually limps close to 10 percent of its
hands, and based on discussion with the human
players who did analysis it seems to have profited
overall from the hands it limped. Claudico also
makes several other plays that challenge conven-
tional human poker strategy; for example it some-
times makes very small bets of 10 percent of the pot,
and sometimes very large all-in bets for many times
the pot (for example, betting 20,000 into a pot of
500). By contrast, human players typically utilize a
small number of bet sizes, usually between half pot
and pot.

Competition Design
To evaluate the performance, judges used “duplicate”
scoring, in which the same hands were played twice
with the cards reversed to reduce the role of luck (and
thereby the variance). For example, suppose human

A has pocket aces and the computer has pocket kings,
and A wins $5,000. This would indicate that the
human outplayed the computer. However, suppose
human B has the pocket kings against the computer’s
pocket aces in the identical situation and the com-
puter wins $10,000. Then, taking both of these
results into account, an improved estimator of per-
formance would indicate that the computer out-
played the human, after the role of luck in the result
was significantly reduced. Each human was given a
partner, who played the identical hands against Clau-
dico with the cards reversed. Polk was paired with
Les, and Kim was paired with Li. The players played
in two different rooms of the casino simultaneously,
with one player from each of the pairings in each
room (so that both players in each room had the
same cards, while both players in the other room had
the cards that Claudico had in the first room).

In total, the humans ended up winning the match
by 732,713 chips, which corresponds to a win rate of
9.16 big blinds per 100 hands (BB/100), a common
metric used to evaluate performance in poker. (The
small blind (SB) and big blind (BB) correspond to ini-
tial investments, or “antes” of the players. In the
match, the SB was 50 chips and the BB was 100
chips.) This was a relatively decisive win for the
humans and was statistically significant at the 90 per-
cent confidence level, though it was not statistically
significant at the 95 percent level. To put these results
into some perspective, Dong Kim won a challenge
match against a strong professional player Nick
Frame by 13.87 BB/100 (he won by $103,992 over
15,000 hands with blinds SB=$25, BB=$50), and
Doug Polk defeated Ben Sulsky in another high-pro-
file challenge match by 24.67 BB/100 (he won by
$740,000 over 15,000 hands with blinds SB = $100,
BB = $200).

The chips were just a placeholder to keep track of
the score and did not represent real money; the
humans were paid at the end from a prize pool of
$100,000 which had been donated from Rivers Casi-
no and Microsoft Research. The human with the
smallest profit over the match received $10,000,
while the other humans received $10,000 plus addi-
tional payoff in proportion to the profit above the
lowest profit.

Agent Architecture
Claudico was an improved version of an earlier agent
called Tartanian7 that came in first place in the 2014
AAAI computer poker competition, beating each
opposing agent with statistical significance. The
architecture of that agent has been described in detail
in a recent paper (Brown, Ganzfried, and Sandholm
2015). At a very high level, the design of the agent
follows the three-step procedure depicted in figure 1,
which is the leading paradigm used by many of the
strongest agents for large games (that is, games that
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are too large to be solved for equilibrium directly by
existing techniques).

In the first step, the original game is approximated
by a smaller abstract game that hopefully retains
much of the strategic structure of the initial game.
The first abstractions for two-player Texas hold ’em
were manually generated (Shi and Littman 2002;
Billings et al. 2003), while current abstractions are
computed algorithmically (Gilpin and Sandholm
2006; 2007a; Gilpin, Sandholm, and Sørensen 2008;
Waugh et al. 2009; Johanson et al. 2013). For smaller
games, such as Rhode Island hold ’em, abstraction
can be performed losslessly, and the abstract game is
actually isomorphic to the full game (Gilpin and
Sandholm 2007b). However, for larger games, such as
Texas hold ’em, players must be willing to incur some
loss in the quality of the modeling approximation
due to abstraction.

The second step is to compute an approximate
Nash equilibrium in the smaller abstracted game,
using a custom iterative equilibrium-finding algo-
rithm such as counterfactual regret minimization
(CFR) (Zinkevich et al. 2007) or a generalization of
Nesterov’s excessive gap technique (EGT) (Hoda et al.
2010).

The final step is to construct a strategy profile in
the original game from the approximate equilibrium
of the abstracted game by means of a reverse map-
ping procedure. When the action spaces of the origi-
nal and abstracted games are identical, this step is
often straightforward, since the equilibrium of the
abstracted game can be played directly in the full
game. However, even in this simplified setting often
significant performance improvements can be
obtained by applying a nontrivial reverse mapping.
Several procedures that modify the action probabili-
ties of the abstract equilibrium strategies by placing
more weight on certain actions have been shown to
significantly improve performance (Ganzfried, Sand-
holm, and Waugh 2012; Brown, Ganzfried, and
Sandholm 2015). These postprocessing procedures
are able to achieve robustness against limitations of
the abstraction and
equilibrium-finding phases of the paradigm.

When the action spaces of the original and
abstracted games differ, an additional procedure is
needed to interpret actions taken by the opponent
that are not allowed in the abstract game model.
Such a procedure is called an action translation map-
ping. The typical approach for performing action
translation is to map the opponent’s action to a near-
by action that is in the abstraction (perhaps proba-
bilistically), and then respond as if the opponent had
taken this action.

An additional crucial component of Claudico,
which was not present in Tartanian7 due to a last-
minute technical difficulty (though a version of it
was present in prior agent Tartanian6), is an
approach for real-time computation of solutions in

the part of the game tree that has reached a greater
degree of accuracy than in the offline computation,
called endgame solving, which is depicted in figure 2
(Ganzfried and Sandholm 2015). At a high level,
endgame solving works by assuming both agents fol-
low the precomputed approximate equilibrium
strategies for the trunk portion of the game prior to
the end game; then the end game induced by these
trunk strategies is solved, using Bayes’ rule to com-
pute the input distributions of players’ private infor-
mation leading into the end game. In general, such a
procedure could produce a nonequilibrium strategy
profile (even if the full game has a unique equilibri-
um and a single end game); for example, in a sequen-
tial version of rock-paper-scissors where player 1 acts
and then player 2 acts without observing the action
taken by player 1, if we fix player 1 to follow his equi-
librium strategy of randomizing equally among all
three actions, then any strategy for player 2 is an
equilibrium in the resulting end game, because each
one yields her expected payoff 0. In particular, the
equilibrium solver could output the pure strategy
Rock for her, which is clearly not an equilibrium of
the full game. However, endgame solving is success-
ful in other games; for example in a game where play-
er 1 first selects an action ai and then an imperfect-
information game Gi is played, we could simply solve
the Gi corresponding to the action ai that is actually
taken, provided that the Gi are independent and no
information sets extend between several Gi. Further-
more, endgame solving has been previously demon-
strated to improve performance empirically against
strong computer programs in no-limit Texas hold ’em
(Ganzfried and Sandholm 2015).

We used the end-game solver to compute the
strategies in real time for the final betting round of
each hand, called the river (the rules of no-limit Texas
hold ’em will be discussed in a subsequent section).

Figure 1. Leading Paradigm for Solving Large Games.
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Despite the theoretical limitation of the approach,
Doug Polk related to me in personal communication
after the competition ended that he thought the riv-
er strategy of Claudico using the end-game solver was
the strongest part of the agent.

Offline Abstraction and Equilibrium Com-
putation
Claudico’s action abstraction was manually generat-
ed and consisted of sizes ranging from 0.1 pot in cer-
tain situations to all-in (wagering all of one’s  remain-
ing chips). The information abstraction was
computed using a hierarchical algorithm that first
clustered the three-card public flop boards into pub-
lic buckets, then clustered the private information
states for each postflop round (that is, flop, turn, riv-
er) separately for each public bucket (no information
abstraction was performed for the preflop round)
(Brown, Ganzfried, and Sandholm 2015). The equi-
librium-finding algorithm used by today’s strongest
Texas hold ’em agents is a Monte Carlo version of the
counterfactual regret minimization algorithm
(MCCFR) (Lanctot et al. 2009). That algorithm
involves repeatedly sampling chance outcomes and
actions down the tree, and updating regret and aver-
age strategy values that are stored at each informa-
tion set. A major reason that CFR has become more
popular than EGT is that the best abstraction algo-
rithms use imperfect recall (Waugh et al. 2009;
Johanson et al. 2012; Brown, Ganzfried, and Sand-
holm 2015), and CFR can be run straightforwardly
on imperfect-recall game abstractions while no
implementations of EGT have been developed for
doing so. Our hierarchical abstraction algorithm
allowed us to apply a new scalable distributed version
of MCCFR (Brown, Ganzfried, and Sandholm 2015).

We ran the equilibrium-finding algorithm for several
months on Pittsburgh’s Blacklight supercomputer
using 961 cores (60 blades of 16 cores each, plus one
core for the head blade, with each blade having 128
GB RAM).

Action Translation
For the action translation mapping, we used the
pseudo-harmonic mapping, which maps a bet x of
the opponent to one of the nearest sizes in the
abstraction A, B according to the following formula,
where f(x) the probability that x is mapped to A
(Ganzfried and Sandholm 2013):

This mapping was derived from analytical solutions
of simplified poker games and has been demonstrat-
ed to outperform prior approaches in terms of
exploitability in simplified games, as well as the best
prior approach in empirical performance against no-
limit Texas hold ’em agents. The mapping also satis-
fies several axioms and theoretical properties that the
best prior mappings do not satisfy, for example it is
Lipschitz continuous in A and B, and therefore robust
to small changes in the actions used in the action
abstraction.

As an example to demonstrate the operation of the
algorithm, suppose the opponent bets 100 into a pot
of 500, and that the closest sizes in our abstraction
are to “check” (that is, bet 0) or to bet 0.25 pot: so A
= 0 and B = 0.25. Plugging these in gives f(x) = 1/6 =
0.167. This is the probability his bet is mapped down
to 0 and interpreted as a check. A random number is
then selected in [0,1], and if it is above 1/6 the bet is
interpreted as 0.25 pot, otherwise as a check.

Postprocessing
We used additional postprocessing techniques to
round the action probabilities that had been com-
puted by the offline equilibrium-finding algorithm
(Ganzfried, Sandholm, and Waugh 2012). We used a
generalization of the prior approach that applied a
different rounding threshold for each betting round
(that is, action probabilities below the threshold were
rounded to zero and then all probabilities were renor-
malized), with a more aggressive (that is, larger)
threshold used for the later betting rounds, since the
equilibrium-finding algorithm obtains worse conver-
gence for those rounds due to having fewer samples.
We did not apply any postprocessing for ourselves on
the river when using the end-game solver, and
assumed neither agent used any postprocessing in
the generation of the trunk strategies used as inputs
to the end-game solver.

It may seem somewhat strange that we applied
postprocessing for our own play, but assumed that no
postprocessing was applied for the trunk strategies
entering the end game, and that this may be prob-

f x( ) =
B ! x( ) 1+ A( )
B ! A( ) 1+ x( )
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Figure 2. Endgame Solving. 

Endgame solving (re)-solves the relevant endgame that has actually been
reached in real time to a greater degree of accuracy than in the offline com-
putation.



lematic due to the mismatch between our own strat-
egy and the model of it entering the end game. We
chose to do this because the endgame solving
approach can be less robust if the input strategies
have weight on only a small number of hands (as an
extreme example, if all the weight was on one hand,
then the end-game solver would assume that the oth-
er agent knew our exact hand, and the solution
would require us to play extremely conservatively).
The approach is much more robust if we include a
small probability on many different hands before
applying the postprocessing. We believed that the
gain in robustness outweighed the limitation of the
mismatch (in addition to the reasons given above, we
already expect there to be a mismatch between the
input trunk strategy for the opponent, which is based
off our offline equilibrium computation, and his own
actual strategy, and thus we would not be removing
this mismatch completely even if we eliminated it for
our own strategy).

Endgame Solving
The endgame solving algorithm consists of several
steps (Ganzfried and Sandholm 2015). First, the joint
hand-strength input distributions are computed by
applying Bayes’ rule to the precomputed trunk strate-
gies, utilizing a recently developed technique that
requires only a linear number of lookups in the large
strategy table (while the naïve approach requires a
quadratic number of lookups and is impractical).
Then the equity is computed for each hand, given
these distributions. The equity of a hand against a
distribution for the opponent is the probability of
winning plus one half the probability of tying. Then
hands are bucketed separately for each player based
on the computed equities for the given situation by
applying an information abstraction algorithm.
Finally an exact Nash equilibrium is computed in the
game corresponding to this information abstraction
and an action abstraction that had been precomput-
ed for the specific pot and stack size of the current
hand. All of this computation was done in real time
during gameplay. To compute equilibria within the
end games, we used Gurobi’s parallel linear program
solver1 to solve the sequence-form optimization for-
mulation (Koller, Megiddo, and von Stengel 1994).

Rules of No-Limit Texas Hold ’em
Two-player no-limit Texas hold ’em works as follows.
Initially two players each have a stack of chips (worth
$20,000 in the computer poker competition). One
player, called the small blind, initially puts $50 worth
of chips in the middle, while the other player, called
the big blind, puts $100 worth of chips in the middle.
The chips in the middle are known as the pot, and
will go to the winner of the hand.

Next, there is an initial round of betting. The play-
er to act can choose from three available options:

Fold: Give up on the hand, surrendering the pot to the
opponent.

Call: Put in the minimum number of chips needed to
match the number of chips put into the pot by the
opponent. For example, if the opponent has put in
$1000 and we have put in $400, a call would require
putting in $600 more. A call of zero chips is also
known as a check.

Bet: Put in additional chips beyond what is needed to
call. A bet can be of any size from 1 chip up to the
number of chips a player has left in his stack, provid-
ed it exceeds some minimum value and is a multiple
of the smallest chip denomination (by contrast, in the
limit variant, all bets must of a fixed size, which equals
the big blind for the first two rounds and twice the big
blind for the final two rounds). The minimum allow-
able bet size is the big blind for the first bet of a round
and the size of the previous bet in the current round
for subsequent bets. A bet of all of one’s remaining
chips is called an all-in bet. If the opponent has just
bet, then our additional bet is also called a raise. In
some variants, the number of raises in a given round
is limited (for limit it is limited to three and for no-
limit it is unlimited), and players are forced to either
fold or call at that point.

The initial round of betting ends if a player has
folded, if there has been a bet and a call, or if both
players have checked. If the round ends without a
player folding, then three public cards are revealed
face-up on the table (called the flop) and a second
round of betting takes place. Then one more public
card is dealt (the turn) and a third round of betting,
followed by a fifth public card (the river) and a final
round of betting. If a player ever folds, the other play-
er wins all the chips in the pot. If the final betting
round is completed without a player folding, then
both players reveal their private cards, and the play-
er with the best five-card hand (out of his two private
cards and the five public cards) wins the pot (it is
divided equally for a tie).

Problematic Hands
Several hands stood out during the course of the
competition that highlighted weaknesses of the
agent.

In one hand, Claudico had A4s (ace and four of the
same suit) and folded preflop after it had put in over
half of its stack (the human opponent had 99). This
is regarded as a bad play, since it would only need to
win around 25 percent of the time against the oppo-
nent’s distribution for a call to be profitable at this
point (Claudico wins about 33 percent of the time
against the hand the human had). The problem was
that the translation mapping mapped the opponent’s
raise down to a smaller size, which caused the agent
to look up a strategy that had been computed think-
ing that the pot size was much smaller than it had
thought it was (Claudico thought it had invested
around 7,000 when it had actually invested close to
10,000 — recall that the starting stacks are 20,000).
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These translation issues can get magnified further as
the hand develops if the agent thinks it has bet a per-
centage (for example, 2/3) of the (correct) size of the
pot, while the strategies that were precomputed
assumed a different size of the pot.

In another hand Claudico had KT and folded to an
all-in bet on the turn after putting in about 3/4 of its
stack despite having top pair and a flush draw (there
were three diamonds on the board and Claudico had
the king of diamonds; the opponent actually had A2
with the ace of diamonds, for a better flush draw but
worse hand due to Claudico having a pair). The issue
for this hand was that the human made a raise on the
flop which was slightly below the smallest size Clau-
dico had in its abstraction in that situation, and it
ended up mapping it down to just a call (it was just
mapped down with around 3 percent probability in
that situation, and so Claudico ended up getting
pretty “unlucky” that the action was mapped in the
“wrong” direction). This caused the agent to think it
had committed far fewer chips to the pot at that
point than it actually had.

The problem in these hands was not due simply to
a flaw in the action translation mapping, or even to
a flaw in the action abstraction (though of course
improvements to those would be very beneficial as
well); even if Claudico had used a different transla-
tion mapping and/or used different action sizes in
the abstraction, it would still have potentially sizable
gaps between certain sizes of the abstraction due to
the fact that the agent can only select so many to
keep the abstraction sufficiently small so that it can
be solved within time and memory limits. That
means that, given the current paradigm, the agent
will necessarily have to map bets to sizes somewhat
far away with some probability, which will cause its
perception of the pot size to be incorrect, as these
hands indicate. This is called the off-tree problem,
which has received very little study thus far. Some
agents, such as versions of the agent from the Uni-
versity of Alberta, attempt to mitigate this problem
by specifically taking actions aimed to get back on
the tree (for example, making a bet that would not
ordinarily be made to correct for the pot size dispari-
ty). However, this is problematic too, as it requires
the agent to take an undesirable action. The endgame
solving approach provides a solution to this problem
by inputting the correct pot size to the end-game
solving algorithm, even if this differs from the agent’s
perception of it at that point due to the opponent
having taken an action outside of the action abstrac-
tion. In general, real-time endgame solving could
correct for many misperceptions in game-state infor-
mation that have been accumulated along the course
of game play; however, this would not apply to the
preflop, flop, and turn rounds, where endgame solv-
ing is not used. Thus it is necessary to explore addi-
tional approaches to this problem; improved algo-
rithms for real-time computation for the earlier

rounds is a potentially promising direction, and per-
haps new approaches can also be developed for
addressing the off-tree problem independently of
endgame solving.

I went over the log files for these two specific
hands with Doug Polk in person after the competi-
tion had ended, and he agreed that Claudico’s plays
in both hands were reasonable had the pot size been
what the computed strategies perceived it to be at
that point. Of course, we both agreed that the hands
were both major mistakes if you include the misper-
ception of the pot size. Even though these were only
low-probability mistakes due to the randomization
outcome selected by the translation mapping, these
types of mistakes can become a significant liability in
aggregate, particularly when playing against humans
who are aware of them and actively trying to exploit
them. Doug alluded to this point as well in an inter-
view after the competition. Based on Doug’s inter-
view and subsequent conversations it seems that he
views this as Claudico’s biggest weakness, and it will
be interesting to see what improvements can be
found, and whether those can be exploited in turn
by good countermeasures.

In one other problematic hand, Claudico made a
large all-in bet (of around 19,000) into a relatively
small pot of around 1700. There were three of a suit
(spades) on the board, and Claudico had a very weak
hand without a fourth spade (so the bet was a “bluff,”
hoping the opponent would fold a stronger hand).
The problem is not that Claudico made a large bet
per se, or even that it did so with a very weak hand;
extremely large bets are correct and part of equilibri-
um strategy in certain situations, and in such situa-
tions they must be made with some weak hands as
bluffs to balance with the very strong “value” hands
or else the strategy would be too predictable (if an
agent never bluffed, then the opponent would just
fold everything except his hands that beat half of the
value hands, and then the bets with the bottom half
of the value hands would be unprofitable). Thus,
making large bets as bluffs is needed in certain situa-
tions. The problem is that certain hands are much
better suited for them than others. For example, sup-
pose the board was JsTs4sKcQh, and suppose the
agent could have 3c2c (three and two of clubs) versus
3s2c (three of spades and two of clubs). Both hands
are extremely weak (they produce the worst possible
five-card hand); however, having the spade three
actually has a subtle and very significant benefit: it
significantly reduces the probability that the oppo-
nent holds an extremely strong hand (for example,
an ace-high or king-high flush) because several of the
hands that would constitute that strength would
contain that card, for example, As3s and Ks3s. Thus,
this would make a much better choice for a hand to
make a large bet with, since the opponent is less like-
ly to have a hand strong enough to call, making the
bluff bet more effective. The endgame-solving algo-

Articles

82 AI MAGAZINE



rithm described in Endgame Solving section takes
this “card removal” factor into account to an extent,
since the equities are computed for each hand against
the  distribution the opponent could hold given that
hand; however, this does not fully take into account
the card removal effect. For example, the 3c2c and
3s2c hands would both have the lowest possible equi-
ty (it would be slightly above zero only because of
possible ties), and would be necessarily grouped into
the same bucket by the end-game information-
abstraction algorithm (the worst bucket) despite the
fact that they have very different card removal prop-
erties.

Doug Polk said that he thought the river strategy
using the end-game solver overall was the strongest
part of Claudico; however, he thought that utilizing
the large betting sizes without properly accounting
for card removal was actually a significant weakness,
since Claudico would be bluffing with nonoptimal
hands. The Claudico team came to this conclusion
ourselves as well during the competition, and for this
reason decided to take out the large bets for Claudi-
co from the end-game solver partway through the
competition, since this issue is most problematic for
those bet sizes (for smaller bet sizes, card removal is
still important, but significantly less important since
we are not just trying to “block” the opponent from
having a small number of extremely strong hands,
since he will be calling with many more hands).
Interestingly, Dong Kim told me after the competi-
tion that they had conducted analysis and Claudico
was actually profiting on the large bet sizes during
the time they were used, despite the theoretical issue
described above. I think everyone agrees that massive
“overbets” are part of full optimal strategies, and like-
ly underutilized by even the best human players. But
card removal is also particularly important for these
sizes, and I think for an agent to use them success-
fully an improved algorithm for dealing with block-
ers/card removal would need to be developed,
though I am still quite curious how well Claudico
would have performed if it continued with those
sizes included in the agent.

Conclusion
It is one thing to evaluate a poker agent against oth-
er computer agents, who largely also play static
approximations of equilibrium strategies; it is anoth-
er to compete against the strongest human special-
ists, who will adapt and attempt to capitalize on even
the smallest perceived weaknesses. This was the first
time a no-limit Texas hold ’em agent has competed
against human players of this caliber, and our team
really had no idea what to expect entering the com-
petition, as previously all of our experiments had
been against computer agents from the AAAI Annual
Computer Poker Competition. Many valuable lessons
were learned that will be pivotal in developing

improved agents going forward. I have highlighted
the two most important avenues for future research.
The first is to develop an improved approach for the
“off-tree” problem where a mistake is made due to a
misperception of the actual size of the pot after trans-
lating an action for the opponent that is not in our
action abstraction. I have outlined promising agen-
das for attacking this problem, including improved
action abstraction and translation algorithms, novel
approaches for real-time computation that address
the portion of the game prior to the final round, and
entirely new approaches specifically geared at solving
the off-tree problem independently of the other
problems. And the second is to develop an improved
approach for information abstraction that better
accounts for card removal/blockers (that is, that
accounts for the fact that having certain cards in our
hand modifies the probability of the opponent hav-
ing certain hands). This issue is most problematic
within the information abstraction algorithm for the
end game, where the card removal effect is most sig-
nificant due to the distributions for us and the oppo-
nent being the  most well defined (that is, there is no
more potential remaining in the hand due to uncer-
tainty of public cards, and this relative certainty will
likely cause the distributions to put positive weight
on fewer hands), and it limits our ability to utilize
large bet sizes, which have been demonstrated to be
optimal in certain settings. Of course, it would be
beneficial to develop an improved information
abstraction algorithm that accomplishes this in the
part of the game prior to the end game as well.

At first glance it may appear that these issues are
purely pragmatic and specific to poker. While one of
the main goals is certainly to produce a poker agent
that can beat the strongest humans in two-player no-
limit Texas hold ’em, there are deeper theoretical
questions related to each component of the agent
that has been described. Endgame solving has been
proven to have theoretical guarantees in certain
games while it can lead to strategies with high
exploitability in others (even if the full game has a
single Nash equilibrium and just a single end game is
considered) (Ganzfried and Sandholm 2015). It
would be interesting to prove theoretical bounds on
its performance on interesting game classes, perhaps
classes that include variants of poker. Empirically the
approach appears to be very successful on poker
despite its lack of theoretical guarantees. Recently an
approach has been developed for game decomposi-
tion that has theoretical guarantees (Burch, Johan-
son, and Bowling 2014); however, from personal
communication with the authors I have learned that
the approach performs worse empirically than our
approach that does not have a worst-case guarantee.

The main abstraction algorithms that have been
successful in practice are heuristic and have no theo-
retical guarantees. It is extremely difficult to prove
meaningful guarantees when performing such a large
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degree of abstraction, for example, approximating a
game with 10165 states by one with 1014 states. There
has been some recent work done on abstraction algo-
rithms with theoretical guarantees, though that work
does not scale to games nearly as large as no-limit
Texas hold ’em. One line of work performs lossless
abstraction, which guarantees that the abstract game
is exactly isomorphic to the original game (Gilpin
and Sandholm 2007b). This work has been applied to
compute equilibrium strategies in Rhode Island hold
’em, a medium-sized (3.1 billion nodes) variant of
poker. Recent work has also presented the first lossy
abstraction algorithms with bounds on the solution
quality (Kroer and Sandholm 2014). However, the
algorithms are based on integer programming for-
mulations, and only scale to a tiny poker game with
a five-card deck. It would be very interesting to bridge
this gap between heuristics that work well in practice
for large games with no theoretical guarantees, and
the approaches with theoretical guarantees that have
more modest scalability.

Scalable algorithms for computing Nash equilibria
have diverse applications, including cybersecurity
(for example, determining optimal thresholds to pro-
tect against phishing attacks), business (for example,
auctions and negotiations), national security (for
example, computing strategies for officers to protect
airports), and medicine. For medicine, algorithms
that were created in the course of research on
poker (Johanson et al. 2012) have been applied to
compute robust policies for diabetes management
(Chen and Bowling 2012); recently it has been pro-
posed that equilibrium-finding algorithms are appli-
cable to the problem of treating diseases such as the
HIV virus that can mutate adversarially (Sandholm
2015).

For the pseudoharmonic action translation map-
ping, in addition to showing that it outperforms the
best prior approach in terms of exploitability in sev-
eral games, we have also presented several axioms
and theoretical properties that it satisfies; for exam-
ple, it is Lipschitz continuous in A and B, and there-
fore robust to small changes in the actions used in
the action abstraction (Ganzfried and Sandholm
2013). Another mapping that has very high
exploitability in several games also satisfies these
axioms, and further investigation can lead to deeper
theoretical understanding of this problem and poten-
tially new improved approaches.

Even the postprocessing approaches, which appear
to be purely heuristic, have interesting theoretical
open questions. For example, it has been shown that
purification (that is, selecting the highest-probability
action with probability 1) leads to an improved per-
formance in uniform random 4 x 4 matrix games
using random 3 x 3 abstractions when playing
against the Nash equilibrium of the full 4 x 4 game
for the opponent (Ganzfried, Sandholm, and Waugh
2012). These results were based off simulations that

were statistically significant at the 95 percent confi-
dence level, and it would be interesting to provide a
formal proof. Furthermore, that paper provided a
conjecture for the specific supports of the games for
which the approach would improve or not change
performance, which was also based on statistically-
significant simulations. It would be interesting to
prove this formally as well, and to generalize the
results to games of arbitrary size. On a broader level,
there is relatively little theoretical understanding for
why the postprocessing approaches — which one
would expect to make the strategies more predictable
— have been shown to be consistently successful.
Surprisingly, the improvements in empirical per-
formance do not necessarily come at the expense of
worst-case exploitability, and a degree of threshold-
ing has been demonstrated to actually reduce
exploitability for a limit Texas hold ’em agent
(Ganzfried, Sandholm, and Waugh 2012).
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