
Advances in robotics may reshape the landscape of
daily life, yet those in the military have been part
of the robotics revolution for some time now. One

cannot traverse far within military echelons nor listen to
the popular press without hearing planning, discussion,
and for some, a great deal of concern regarding the mili-
tary’s latest push toward autonomous systems. The mili-
tary’s use of drones (uninhabited aerial systems, or UASs)
has been a ubiquitous topic of discussion/criticism with-
in the popular media for several years since their highly
publicized use in regions such as Pakistan, Yemen, and
Afghanistan. Much of the chagrin surrounding these sys-
tems, despite the fact they are currently teleoperated with
human oversight and command, has to do with whether
or not we can or should trust them in a combat environ-
ment. Robotic systems within the military may be oper-
ated in hostile, complex situations and may, someday, be
given the authority to execute lethal decisions within the
battle space (Arkin 2009). However, future concept of
operations (CONOPS) will likely inject greater autonomy
into these systems that will ultimately increase the need
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� This article discusses verification and
validation (V&V) of autonomous sys-
tems, a concept that will prove to be dif-
ficult for systems that were designed to
execute decision initiative. V&V of such
systems should include evaluations of
the trustworthiness of the system based
on transparency inputs and scenario-
based training. Transparency facets
should be used to establish shared
awareness and shared intent among the
designer, tester, and user of the system.
The transparency facets will allow the
human to understand the goals, social
intent, contextual awareness, task limi-
tations, analytical underpinnings, and
team-based orientation of the system in
an attempt to verify its trustworthiness.
Scenario-based training can then be
used to validate that programming in a
variety of situations that test the behav-
ioral repertoire of the system. This novel
method should be used to analyze
behavioral adherence to a set of govern-
ing principles coded into the system. 



for understanding the trust dynamics that exist
between humans and machines. As will be discussed
in this article, the challenge of understanding these
trust dynamics is more complicated than simply
increasing the system’s reliability. 

Artificial intelligence methods need to be devel-
oped that allow robots to operate with a wide variety
of different human users in complex social situations
involving both conflict and cooperation; to learn
from and personalize their decision making to the
needs, training, culture, and norms of a particular
person or group; and to reflectively consider how
each possible action the system takes will affect not
only the mission’s goals but also the person’s assess-
ment of the robot’s competency. Furthermore, AI
designs that increase the level of transparency will
not only engender operator trust during these sce-
narios but should additionally balance the level of
trust between the operator, certifier, and designer of
these systems. The recent United States Air Force
(USAF) 30-year strategy announced future plans to
invest in greater levels of autonomous systems, stat-
ing, “The accelerated development of artificial intel-
ligence and like technologies will revolutionize the
concept of autonomy. Whereas we view autonomous
systems as those able to execute a set of pre-pro-
grammed functions, future systems will be better able
to react to their environment and perform more situ-
ational-dependent tasks as well as synchronized and
integrated functions with other autonomous systems.
This will provide tremendous flexibility in highly-
contested environments” (US Air Force 2014). One of
the potential advantages of having systems that can
learn and execute decision authority is that they may
be more adaptable to dynamic situations relative to
contemporary systems. In this future human-
machine paradigm, the human should be considered
a partner and not a governor or overseer of autono-
my. He or she must be able to place trust in an
autonomous partner and will not be able to take on
the workload of the autonomy if a failure occurs. Fur-
thermore, it may be necessary for the machine to rec-
ognize a person’s mistakes and to challenge that per-
son’s decision making, especially if ethical guidelines
may be violated (Arkin, Ulam, and Wagner 2012).
Such topics dictate multidisciplinary approaches to
autonomy to maximize the convergence of disci-
plines such as AI, computer science, engineering, and
psychology. If a human-machine team is to, in fact,
act as a partnership, how do we engender trust? 

Military doctrine, notably within the United States
Air Force has also acknowledged this issue as one of
the most critical research challenges involving
autonomous systems. “In the near to mid-term,
developing methods for establishing ‘certifiable trust
in autonomous systems’ is the single greatest techno-
logical barrier that must be overcome to obtain the
capability advantages that are achievable by increas-
ing use of autonomous systems” (Dahm 2010). The

Defense Science Board report on autonomy stated:
Test and certification techniques that are appropriate
for autonomous systems may be dramatically different
from those used for manned platforms: The projected
exponential growth in Software Lines of Code (SLOC)
and the nondeterministic nature of many algorithms
will lead to prohibitive costs to test exhaustively. In
lieu of this brute force approach, timely and efficient
certification (and recertification) of intelligent and
autonomous control systems will require analytical
tools that work with realistic assumptions, including
approaches to bound uncertainty caused by learn-
ing/adaptation or other complex nonlinearities that
may make behavior difficult to predict. Test and certi-
fication will need to prove not just safety, but also lev-
el of competence at mission tasks. This will require
clearly defined metrics for stability, robustness, per-
formance, controllability, for example, and the devel-
opment of new tools for software verifiability and cer-
tification. Over time, machine learning will become an
important aspect to autonomous system performance
and will pose extreme challenges to test and certifica-
tion of systems (Defense Science Board 2012). 

More recently, the National Academy of Sciences
report, Autonomy Research for Civil Aviation, states
regarding “Trust in adaptive / nondeterministic
Increasingly Autonomous (IA) systems“ that “Verifi-
cation, validation, and certification are necessary but
not sufficient to engender stakeholder trust in
advanced adaptive/nondeterministic IA systems”
(National Research Council 2014). In this spirit, the
current article will examine the concept of trust in
autonomous systems and it will offer a model to
move this complex construct into tangible recom-
mendations in an effort to reduce the current assur-
ance burden.

For the purposes of this article, consider autonomy
as “systems that have a set of intelligence based capa-
bilities that allow it to respond to situations that were
not pre-programmed or anticipated in the design
(that is, decision-based responses). Autonomous sys-
tems have a degree of self-government and self-direct-
ed behavior (with the human’s proxy for decisions)”
(Masiello 2013). V&V for truly autonomous systems
is inherently problematic for many reasons. For the
purposes of this article: (1) the very nature of auton-
omy suggests that the system will evidence “decision
initiative” wherein it behaves unpredictably; (2) the
contexts in which autonomous systems may offer the
greatest value are those characterized by high levels of
uncertainty where humans and machines may work
well together as part of a human-machine team; and
(3) the assurance that an autonomous system will
behave as intended, and the evidence required to cre-
ate that assurance (or trust) in autonomous systems
differs widely depending on one’s perspective (for
example, designers, testers, certifiers, or users; Depart-
ment of Defense [2015]). 

It is important to highlight that the term
autonomous system is meant to refer to the whole sys-
tem, including the platform, hardware, sensors, actu-
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ators, software, and other aspects. This fact from a
certification perspective, however, is problematic in
essence. Contrary to the operator or user, the most
difficult and challenging component within an
autonomous system to trust (or gain assurance of) is
the intelligent, learning, and adaptive software
embedded within. This is primarily due to the certifi-
er’s responsibility to argue with confidence, support-
ed by evidence that the system will always behave as
intended. With that in mind, and due to the inabili-
ty to test all possible combinations of failures, tradi-
tional verification and validation of critical software
systems typically occur through a process of testing
each software component in isolation, without regard
to the interactions of each component, relying on
future “integrated” tests to prove out the entire sys-
tem and the complex interactions between the com-
ponents. Within this environment, strict rules govern
the design and operation of any software within the
safety critical domain. Such restrictions inhibit all but
the simplest form of automation. The more recent
Joint Strike Fighter coding standards provide an
example of some of these restrictions, that is, no
recursion, no introduction of variables without
immediately initializing them with meaningful val-
ues, and no initially “unreachable” code. (Lockheed
Martin 2005). Additionally, the level or extent of test-
ing required of all software is dependent on the level
of risk that software will present to a system and its
users. 

In addition to performance or operational require-
ments, the evaluation of safety requirements is
intended to assess how critical or to what extent a
failure could cause loss of life or significant cost. This
criticality assessment is a key driver for evidence gen-
erated in both the verification and validation stages
of a system design and is highly dependent on the
intended operational environment and the require-
ments of the system. For example, some current mil-
itary and civilian aviation system safety regulations,
MIL-STD-882D and SAE ARP 4761, respectively, imply
that safety-critical software must be deterministic or
time invariant, meaning that for any given input, the
software will produce the same output for all periods
of assessment. Even for these systems, software fail-
ures due to programming bugs or unintended uses
can produce catastrophic results. For example, adap-
tive flight-critical software (a sublevel of autonomous
software) remains a significant challenge for the civil
aviation community; proving to be “particular diffi-
cultly to certify because by definition [adaptive sys-
tems] change their software defined parameters
whilst in operation in response to the experienced
time varying operating environment” (Wilkinson,
Lynch, and Bharadwaj 2013). Thus, for autonomous
systems new AI development and test methodologies
must be created that verify how these systems operate
as well as characterize how and when they fail not
only prior to deployment but continuously through-

out the operational cycle of the system. This is an
important challenge facing artificial intelligence
researchers, robotics designers, testers, and certifica-
tion authorities. Developing such tests may demand
considerable out-of-the-box thinking, perhaps
involving probabilistic models of performance, but
specifically changing the current testing and evalua-
tion paradigm to a more continuous, transparent
approach as described in the Department of Defense’s
Test and Evaluation, Verification and Validation
(TEVV) of Autonomy Working Group’s strategy
(Department of Defense 2015). Some of the novel
approaches may include not only changes to the
design process, but also changes to the testing process
that incorporate scenario-based training as a means
to evaluate the effectiveness of autonomy under vary-
ing levels of complexity/difficultly (for example,
using scaffolding techniques).

These software constraints, and the verification
activities performed to ensure that they are met, are
imposed due to an implied argument of safety, an
implied argument of risk, and ultimately trust: trust
by certification authorities that a system is acceptably
safe and secure within a particular context. Certifica-
tion, or the comprehensive evaluation of a process,
system, product, event, or skill typically measured
against some existing norm or standard, presents an
additional problem. Certification of airworthiness
within civil aviation, for example, relies heavily on
the remote human pilot to mitigate any risks that
arise within untested, uncertain environments. This
poses significant limitations in a human-machine
team. “Aviation has been very successful with a
human-centric paradigm, the idea that it is humans
that save the day,” (Warwick 2014). Within the auto-
motive or ground autonomy domain, the National
Highway Traffic Safety Administration (NHTSA)
released a preliminary report concerning the devel-
opment, testing, and licensure of driver-aided
autonomous vehicles on national roadways. Even the
highest level of autonomy within their horizon still
employs the human operator as a failsafe mechanism,
stating, “Several State automated vehicle laws con-
sider the person who activates the automated vehicle
system to be the ’driver‘ of the vehicle even if that
person is not physically present in the vehicle. NHT-
SA, however, is not aware of any prototype automat-
ed vehicle systems that are capable of operating on
public roads without the presence of a driver in the
driver’s seat who is ready to control the vehicle”
(National Highway Traffic Safety Administration
2013). If the current certification paradigm relies on
an implied argument of trust, an argument based
heavily on the human to provide risk mitigation, the
advantages of the autonomy will not be realized. New
certification standards, design standards, require-
ments, and arguments of safety, must be developed
to enable the next generation of autonomous capa-
bility.



This article attempts to address a set of require-
ments and design approaches to facilitate the engen-
derment of trust in autonomous systems. These
requirements enforce transparency in an autono -
mous design based on a task-based perspective and
using training/testing to examine the system’s adher-
ence to a set of principles in accordance with the
trustworthiness of the system as a method for reduc-
ing future uncertainty regarding the system’s behav-
ior and intent. This article is not suggesting that cur-
rent software verification, validation, and ultimately
certification requirements no longer apply. However,
it is important to understand that the linkage
between operator trust and system certification drives
a new paradigm in both how the system is designed
and continuously verified. As stated in the recently
published Defense Science Board Summer Study on
Autonomy, the design cycle of an autonomous system
is envisioned as a continuous process that “begins
with experimentation and development of doctrine
and CONOPs, followed by specification of opera-
tional requirements, and proceeds to system design,
development, testing, training, operations, and main-
tenance. While all these functions are part of any nor-
mal process to field a new system, the distinction for
an autonomous system is that the sequence is not lin-
ear, but a continuous process spanning the entire sys-
tem lifecycle.” (Defense Science Board 2016). Within
the Department of Defense’s Autonomy Community
of Interest Working Group’s TEVV strategy, it is pro-
posed that a new, iterative method of self-verification
be designed into an autonomous system such that
during initial operation, the system can update or
adapt its design while subsequently providing its own
self-verification (Department of Defense 2015). The
key concept that dramatically changes the landscape
of traditional V&V is the ability for the autonomous
agent to incrementally verify itself, arguing its own
safety in a sense. This type of run-time verification
elicits a capability to encode run-time contracts that
become part of the autonomous agent’s functional
behavior. This enables the agent to incrementally
check its behavior against these constraints, modify
its response to conform to these constraints, and pro-
vide feedback to the operator about the state of its
behavior. A recent study performed by the IDA Cor-
poration investigated this approach to verification,
referring to it as “Evidenced Based Licensure of
Autonomous Systems.” Although not completely
published, this study focuses on changing the design
process for autonomy to allow structured learning to
be counted as evidence of certification. Using this
new design for certification paradigm, it is proposed
that a new set of design requirements specifically tar-
geted to engender system transparency, trust, and
trust calibration will augment and potentially reduce
the burden on current verification, validation, and
certification processes for future autonomous sys-
tems.

Trust, Trustworthiness, 
and Trust Calibration

Trust represents the willingness of individuals to be
vulnerable to the actions of others with little ability
to monitor the others (Mayer, Davis, and Schoorman
1995). In contrast to a V&V process that tests every
aspect of software to create a lack of risk, trust repre-
sents the adoption of risk. A key element of Mayer
and colleagues’ (1995) model of trust is the separation
of “trust” (a human psychological intention) from its
antecedents (labeled trustworthiness). Antecedents of
trust within the context of human-machine trust has
been operationalized in terms of constructs that
range from reliability (Wang, Jamieson, and Hollands
2009), system performance (Hancock et al. 2011),
analytic transparency (Dzindolet et al. 2003), to the
anthropomorphic features of the system (Pak et al.
2012) and social etiquette (Parasuraman and Miller
2004). From a V&V perspective it will be important
for humans to be aware of the trustworthiness of the
system, yet the salience of the specific facets of trust-
worthiness will likely differ based on the role of the
human interacting with the system. 

Prior research has shown that human reliance (that
is, the behavioral manifestation of trust) on technol-
ogy can be suboptimal (Lee and See 2004) and the
introduction of technology in the form of automa-
tion may lead to unpredictable/unintended conse-
quences (Parasuraman and Riley 1997). For example,
a recent meta-analysis of the trust in automation lit-
erature found that systems characterized by the high-
est level of automation (action implementation) were
associated with the highest degradation of perform-
ance when the system failed (Onnasch et al. 2014).
Therefore, a critical facet of autonomous systems is
promoting “appropriate reliance” (see Lee and See
[2004] for a review). 

As humans, we have a tendency to rely too much
on technology (that is, misuse) or not to rely enough
on technology (disuse; see Parasuraman and Riley
[1997]). In fact, many high-profile aviation accidents
have been blamed on overreliance on technology (for
example, autopilot), which could lead to loss of situ-
ational awareness reducing the pilot’s ability to react
appropriately to situational demands (Geiselman,
Johnson, and Buck 2013). The inverse, under
reliance, is also a threat to autonomous systems with-
in the military, as this would result in inefficiencies at
the strategic, operational, and financial domains. The
above examples highlight the need for a trust-cali-
bration process during V&V within the military
where a designer, tester, and user of a system analyze
the trustworthiness of the system and make an
informed decision to rely on that system, or not. Yet,
the dynamic nature of human interaction with
autonomous systems, complexities that arise from sit-
uational factors, and the unique information needs
of the different perspectives (designer, tester, and
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user) make this problem challenging. There are two
approaches discussed herein that could improve trust
calibration and ultimately form the basis of a method
to certify trust of autonomous systems (that is, V&V):
quantification/communication of trustworthiness of
the system through transparency (ultimately to “ver-
ify” the trustworthiness of the system) and train-
ing/testing in a variety of scenarios to “validate” the
operator’s trust of the system under disparate situa-
tional constraints.

For artificial intelligence researchers, an examina-
tion of trust and intelligent systems encompasses
both the creation of intelligent methods that allow
people to accurately calibrate their trust and hence
the risks they place in the system and also the cre-
ation of intelligent systems that evaluate the trust-
worthiness of the system’s human partner. For near-
term military applications the trust calibration of
users is an immediate concern. Lack of trust has been
shown to result in disuse; placing too much trust in a
system tends to result in misuse (Parasuraman and
Riley 1997). For true human-machine partnerships,
the intelligent system will need to also evaluate the
person’s trustworthiness, autonomously assessing the
risk associated with relying on a particular person’s
actions, information, or directions. In both cases it
will be critical that the autonomous system be trans-
parent and able to communicate with the human in
a manner that takes into consideration the person’s
background, level of understanding, and predilec-
tions. 

Verifying Trustworthiness   
Through Transparency

Researchers in the area of automation have demon-
strated that one method to improve users’ ability to
calibrate their trust of an automated tool is to provide
the user with information about the analytical under-
pinnings of the tool (for example, how the system
works [Dzindolet et al. 2003] or the rationale for a rec-
ommendation [Lyons et al. 2016]) as well as by prov-
ing information about the awareness, understanding,
and projected states of automated agents (Mercado et
al. 2016). System interfaces and/or training manipu-
lations that explain why a system may fail (Dzindolet
et al. 2003, Kim and Hinds 2006) or that highlight the
reliability levels of an automated tool (Wang,
Jamieson, and Hollands 2009) have been shown to
influence trust calibration. Recently, researchers have
called for an expanded model of transparency to
address the potential added complexity evident with-
in autonomous systems and robotics. Transparency,
in this sense, can be defined as the communication of
system-centered factors and human-centered factors
that promote shared awareness and shared intent
within a human-machine team (see Lyons [2013]).
This definition of transparency is much broader and
intended to leverage the rich information taken for

granted within human-human relationships. For
instance, social cues, intentional cues, shared aware-
ness of environmental conditions, and context-spe-
cific capability awareness could all play an important
role in promoting better human-machine interac-
tions and ultimately better trust calibration. This
expanded model of transparency will be briefly dis-
cussed. 

Lyons (2013) outlines various parameters of an
expanded model of transparency that includes an
intentional model, task model, analytic model, envi-
ronment model, teamwork model, and human state
model. The intentional model focuses on communi-
cating to the operator the higher-level purpose of the
technology, the method and style of interaction to be
expected, the social/moral intentions of the technol-
ogy (for example, is this technology designed to fol-
low commands, to interrupt the task scenario when
necessary, to reduce threats or risks at the expense of
efficiency?), and some understanding of the technol-
ogy’s goal structure. This information should provide
operators with some sense of general predictability
with regard to how interactions with the technology
might occur while also giving them a sense of the sys-
tem’s priorities. Researchers believe that the physical
appearance of a robot can afford cues to the users per-
taining to the robot’s functionality (Fischer 2011;
Goetz, Kiesler, and Powers 2003). Similarly, pre-
dictability of the system’s social interaction and
“moral” programming should help to foster appro-
priate trustworthiness. In this sense, the “how”
should be defined in terms of broad categories of
behavior perhaps akin to the laws of robotics coined
by Isaac Asimov. Rather than solely having a task-dri-
ven model of behavior, the users should have an
understanding of the robots moral, albeit, pro-
grammed, philosophy of interaction with humans.

The task model is much more context specific. The
task model consists of the system’s understanding of
a task structure, information relating to the system’s
awareness of goals in relation to a task, information
relating to the system’s real-time progress in relation
to those goals, and awareness of when the system
makes a mistake (an inevitable aspect of any
machine). A very useful example of the task model in
practice is the Global Positioning System (GPS) tools
that we use every day. The GPS highlights the desti-
nation, the route, and the position along the route for
drivers in real time. When the GPS loses signal or
when the driver misses a turn, the GPS will say “recal-
culating” or “lost satellite reception.” Granted, many
autonomous systems will be more complex than GPS
systems; however, this relatively simple representa-
tion of the task model can go a long way in support-
ing operators who are interacting with the tool. This
will provide useful information to the human regard-
ing where the system is in terms of its task sequence
and why it is performing a certain action or behavior.
An important facet of the task model would be the
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system’s awareness of its capabilities in a given con-
text. Understanding for example, that the reliability
of the system is questionable under specific condi-
tions would do a great deal to promote appropriate
trust from the human users of the systems.

The transparency element that has thus far
received the majority of attention has been the ana-
lytic model. The analytic model provides operators
with an understanding of how the system works,
what calculations and algorithms it uses, and why it
might make an error. Research has shown that added
information about the analytical properties of an
automated system or robot can improve the opera-
tor’s ability to accurately judge trust of the system
(Dzindolet et al. 2003, Kim and Hinds 2006). Howev-
er, this added information could have a negative
impact on the operators if it led to information over-
load in a demanding task situation or if it confused
novice operators by being too complex to under-
stand. Therefore, the analytical model is probably
best implemented in the training or socialization
phase of the human-robot interaction. Further, great
care should be taken to truly understand how much
information is enough to promote optimal trust cali-
bration while minimizing data overload. Research has
shown that added transparency can be accomplished
without having a negative workload effect (Mercado
et al. 2016). 

In contrast to the analytic model, the environment
model should present operators with real-time infor-
mation communicating the system’s awareness of
environmental conditions, constraints, and task-
related limitations in relation to the environment.
Returning to the GPS example, a system could inform
operators of potential upcoming traffic jams, road
conditions, or ongoing construction as a method to
update the operator of the real-time constraints with-
in the environment. Examples of how the environ-
ment model could be operationalized in military
robotic air platforms could include understanding
weather patterns or flight damage to a platform such
as in NASA’s Emergency Landing Planner (Meuleau et
al. 2009), using digital terrain elevation data for col-
lision avoidance (Koltai et al. 2014), awareness of
threats in different geographical areas, or strength of
satellite or network connectivity in different geo-
graphic regions. This awareness of environmental
conditions will be particularly useful for distributed
human-machine interactions (that is, where the oper-
ator and the system are not colocated). For instance,
having shared awareness of environmental condi-
tions is critical for autonomous systems for NASA,
which may be monitoring systems on one planet and
that operate on another (Stubbs, Wettergreen, and
Hinds 2007). Shared awareness of environmental
conditions will allow operators to anticipate action,
understand anomalous behavior, and promote better
adaptation to novel demands. Similarly, shared men-
tal models have been shown to be useful in human-

human teams by facilitating adaptability and per-
formance (Marks et al. 2002). 

An essential facet of future autonomous systems
will be their ability to effectively team with human
counterparts (Chen and Barnes 2014, Lyons 2013).
Fortunately, there is a wealth of knowledge from the
literature on human-human teams that researchers
can draw on in making recommendations for
human-machine teams. Specifically, prior research
has demonstrated the importance of understanding
the roles, responsibilities, and duties of one’s team-
mates (Marks et al. 2002; Volpe, Cannon-Bowers, and
Salas 1996) as such information will allow individu-
als to anticipate the behavior of their teammates, pro-
vide backup behavior, and generally have a shared
mental model of the team. The same information is
important in human-machine teams, yet designers
often neglect this fact. Therefore, the teamwork mod-
el within the expanded transparency theory suggests
that adding information about the team dynamics
between the human operator and an autonomous
system(s) will improve the human-machine interac-
tion because it will allow the operator (and to some
extent the system) to anticipate the needs or actions
of the teammate, ultimately reducing uncertainty.
Parasuraman, Sheridan, and Wickens (2000) provide
a useful framework for division of labor between
humans and robots in their discussion of different
stages of information processing and their discussion
of levels of automation. They discuss information
processing as consisting of information acquisition,
information analysis, decision analysis and selection,
and action implementation. Even such a high-level
framework as this could be useful in terms of foster-
ing a shared awareness between a human and a robot.
Once the higher-level division of labor is shared and
understood between both parties, it will be important
for a set of norms to be defined to negotiate uncer-
tainties and the dynamic nature of teamwork; this
will be especially true if the human is executing
supervisory control of multiple robots at one time.
Examples of the teamwork model could include: (1)
visualization of the division of labor in a given task
context (this could change dynamically as a task sce-
nario unfolds overtime), and (2) identification of
roles and responsibilities both generally and within a
particular task context. 

Specific recommendations for fostering trans-
parency from the perspective of designer, tester, and
user can be found in table 1. 

Developing Transparent 
Artificially Intelligent Systems

Artificial intelligence researchers have long recog-
nized the value of creating transparent artificially
intelligent systems (Minsky 1974). A transparent
intelligent system is capable of communicating the
reasons for its behavior to its human partner in a way
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Table 1. Transparency Recommendations for Verifying System 
Trustworthiness for Designers, Testers, and Users of Autonomous Systems. 

Transparency 
Factor 

Perspective 

 Designer Tester User 
Intention/social 
Intention 

Design matches intended use
Interaction style matches 
desired programming 

Goal-based behavior is 
traceable back to code 

Design does not violate 
expectations of the user  

Design matches intended use 
Interaction style does not 
compromise safety or 
performance 

Testing scenarios incorporate a 
wide variety of contexts to foster 
awareness of the system’s 
adherence to intentional 
programming 

Design matches 
intended use  

Interface is intuitive and 
easy to use 

Interaction style 
facilitates engagement 
with the system  

Interaction style 
promotes 
dialogue/exchange, 
sense of psychological 
safety and competence  

Environment Algorithms/sensors are 
accurate at a representative 
sample of ranges of specified 
capability 

Algorithms/sensors are 
sensitive enough to changes in 
the environment to be able to 
inform the user 

Algorithms/sensors are accurate 
at a representative sample of 
ranges of specified capability 

Changes in sensor data are 
traceable to changes in the 
environment  

Interface and or training 
fosters awareness of how 
the system acquires and 
analyzes information 
from the environment  
Interface and training 
foster awareness of how 
the system’s capabilities 
change in different 
environmental 
conditions  

Task  Behavior is traceable to code  

System performs effectively  

System meets performance 
standards in diverse scenarios  

Interface is familiar to 
the user   
Interface and training 
promotes situational 
awareness of task-based 
attention of the system   
Allows user to anticipate 
the system’s future 
action  

Analytic Logic driving behavior is 
traceable to code  

Observed behaviors align to the 
moral programming of the 
system in a variety of 
representative domains  

Interface is intuitive to 
the user  
Logic driving behavior is 
clear to the user  

Logic driving behavior is 
traceable by the user  

Rationale for errors and 
potential errors is clear 
to the user  

Teamwork Transition between human 
and system-driven 
requirements is traceable to 
sensor inputs from the system 

Transition between human and 
system occurs at logical critical 
decision points in diverse 
scenarios  

System communicates 
awareness of division of 
labor and adjusts as 
situations change  

System informs user 
when it is safe the 
transfer authority to the 
user unless doing so 
would compromise 
safety  

Human State  Not covered in this report  Not covered in this report Not covered in this 
report 



that will be understood. Depending on the applica-
tion, the presentation of these reasons may be verbal,
written, auditory, individualized, based on intimate
experiences with the person, or guided by the rule of
law or by the laws of war. The establishment, main-
tenance, and calibration of trust may demand that an
intelligent system’s behavior be transparent. More-
over, V&V best practices would be well served by
introspective mechanisms allowing testers to peer
into an autonomous system’s reasoning. 

The possibility of creating transparent, artificially
intelligent systems has been examined, occasionally
under different monikers, as part of several of artifi-
cial intelligence’s subdomains. In data mining and
machine learning, for example, transparency-related
research has explored methods for characterizing data
in terms of human interpretable models (Ruping
2006). An interpretable model is a model that is effi-
cient, accurate, and understandable. At a more foun-
dational level, Halpern and Pearl (2005) examine for-
mal methods focused on resolving causation and
using these uncovered causes to generate automated
explanations. Another perspective has been provided
by the human factors and user design community.
Chen and Barnes (2015) define transparency “as the
descriptive quality of an interface pertaining to its
ability to afford an operator’s comprehension about
an intelligent agent’s intent, performance, future
plans, and reasoning process.” As part of their SAT
model, they present this information in three differ-
ent levels: the first level presents the agent’s desires
and intentions; the second level offers the agents
beliefs as well as the environmental constraints that
may be causing these beliefs; the third and final level
displays the agent’s predictions for the future (Barnes,
Barber, and Procci, 2016). 

Unfortunately, these approaches do not individu-
alize their communications with the user or consider
the person’s knowledge, background, or the timing of
the transparency messages. One challenging aspect of
creating a transparent intelligent system is knowing
when to be transparent. A system that explains its
behavior too often may increase the cognitive load
placed on the person. Moreover, improperly timed
explanations can affect trust as extensively as an error
itself, perhaps even appearing disingenuous or decep-
tive. Robinette, Howard, and Wagner (2015) present-
ed human subjects with a guidance robot that led
them to a meeting room in a virtual world. While in
the room, an emergency was generated and the robot
offered to guide the person to the nearest emergency
exit. Previous studies had shown that if the robot
made navigation errors on the way to the meeting
room, subjects tended not to trust the robot and
elected not to use it to find the exit (Robinette,
Howard, and Wagner 2015). Yet, when the robot
explained why it had failed or apologized for the fail-
ure, the subject’s trust would be repaired only if the
timing of the explanation or apology was right.

Explanations generated immediately after the mis-
take had no impact on trust but explanations made
just prior to the person’s decision to use the robot
during the evacuation resulted in complete trust
repair even though the wording of the messages was
identical. Achieving transparency may therefore be
significantly more challenging than simply providing
the user with reasons for the system’s behavior. 

As discussed, transparency can potentially be
arrived at using a series of interconnected models that
present specific types of information at the right
time. It is worth considering how the underlying
computational representations that foment a robot’s
behaviors might be used to generate transparent
statements that lend understanding to the system’s
operation and reasoning. As has been well noted,
some representations (such as decision trees) lend
themselves naturally to communication with people.
Unfortunately, many representations that currently
show the most promise (for example, neural net-
works, graphical models) are the least naturally
understandable. Yet some recent work is demonstrat-
ing that even these types of computational represen-
tations may afford interesting methods for demon-
strating transparency (Yosinski et al. 2015).
Additional research is needed to provide insight relat-
ed to the design of transparent intelligent systems.
However, it will be imperative that multidisciplinary
approaches and teams be formed to address these
challenges. AI researchers are adept at computational
methods and representations, yet they may be joined
by social scientists to test out methods for garnering
understanding and acceptance of these computation-
al representations outside of AI communities. Other-
wise, we run the risk of developing elegant algorithms
and mathematical formalizations that the majority of
individuals cannot understand, limiting their ability
and motivation to appropriately calibrate their trust
of such systems. 

Scenario-Based Training 
Once the design parameters are implemented to ver-
ify the trustworthiness of the system as described,
human-machine teams should engage in a series of
exercises to validate the trustworthiness of the system
based on operator perceptions using various scenarios
that manipulate factors that shape trust. The scenar-
ios used during the human-machine training should
test the envelope both in terms of performance
expectations but also uncertainty. Testers will want
scenarios that create morally contentious situations
for the autonomy to see how it will react to ambigu-
ous stimuli. Users will want to train with systems dur-
ing ideal and degraded communications links so that
they can get an understanding of the range of poten-
tial situations that may exist. 

Experts perform better than novices do at estimat-
ing the trustworthiness of autonomous systems
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because these systems are more transparent to experts
(Chen, Barnes, and Harper-Sciarini 2010; Desai et al.
2009; Lee and See 2004). The more users understand
how a system functions and develop the skills to
identify when the system is approaching the bounds
of acceptable operation, the more accurate their esti-
mates of trustworthiness should be (Dzindolet et al.
2003; Wang, Jamieson, and Hollands 2009). Unfortu-
nately, the circumstances that necessitate auto no -
mous systems are often very complex, and expertise
among the population of users during verification
and validation is typically low because it may be a
new system (Hancock, Billings, and Schaefer 2011).
Therefore, when attempting to assess the trustwor-
thiness of a system during verification and validation
accurately, a fundamental goal is to develop expertise
as rapidly as possible in relevant, highly-complex
domains.

The application of instructional scaffolding (IS) to
human-machine scenario-based training could
enable more accurate estimates of system trustwor-
thiness during verification and validation. IS fosters
learning in complex situations where immediate
high-level performance is not feasible by providing
learners with additional support to extract meaning
during training scenarios (Hogan and Pressley 1997).
The distinguishing feature of IS is the reciprocal rela-
tionship between trainee proficiency and training dif-
ficulty (Puntambekar and Hubscher 2005). As learners
become more proficient, the training becomes more
complex and provides diminishing levels of support
(Pea 2004). For example, when training with an
autonomous system, scaffolding could slow down
desired response time to better explain a complex
relationship, highlight important information, pro-
vide potential explanations for observed uncertainty,
guide moral decision making, or generate deeper
learning by asking trainees to explain their decision-
making processes. Moreover, scaffolding offers the
possibility of multitiered learning by demonstration
involving hierarchical representations (Garland and
Lesh 2003) and planning (Hoang, Lee-Urban, and
Muñoz-Avila 2005).

The goal of accurately assessing system trustwor-
thiness by using training to foster human-machine
trust relies on complementary instructional objec-
tives across a wide variety of cognitions, behaviors,
and attitudes in a highly complex and novel setting.
Because expert teams are able to effectively execute
combinations of taskwork and teamwork called for by
the environment, task, and work situation, team
training often focuses on the development of task
and team competencies (Cannon-Bowers et al. 1995).
Therefore, when using training to foster trust in
human-machine teams, one group of instructional
objectives should focus on developing task compe-
tencies that allow the human to fulfill his or her indi-
vidual role assignment. A second group of instruc-
tional objectives should focus on developing team

competencies that allow the human to fulfill his or
her team role assignments (Salas et al. 2008).

Partially overlapping with the first two groups of
instructional objectives, but more pertinent to the
current effort, a third group of instructional objec-
tives should focus on fostering trust through the
application of transparency factors in training con-
tent. The shared goal of these trust-oriented instruc-
tional objectives is to increase the expertise of the
trainee with regard to system functioning. In other
words, the trainee should fully understand the intent,
environment, task, analytic, and teamwork models of
the autonomous system (Lyons 2013; Stubb, Wetter-
green, and Hinds 2007). Experiencing similarities and
differences of behavior across a wide variety of situa-
tions promotes deeper learning and enhances adapt-
able performance, so the training should present
transparency factors in as many different scenarios as
feasible (Burke et al. 2006; Chen, Thomas, and Wal-
lace 2005; Gorman, Cooke, and Amazeen 2010; Han
and Williams 2008). Such situational variance could
trigger machine learning in AI and provide affor-
dances for their subsequent representation, particu-
larly during debriefing scenarios where the human
operator might interrogate the rationale for the sys-
tem’s actions and decision logic. Thus, the training
should present basic content about the transparency
factors to trainees, and then the trainee and AI should
engage in varied scenarios that increase in complexi-
ty as the trainee becomes more proficient at not only
his or her taskwork and teamwork but also his or her
understanding of how the AI reacts to situational
constraints (Holzinger et al. 2009; Lateef 2010; Salas,
Wildman, and Piccolo 2009).

The intentional model is the first factor of trans-
parency and consists of the purpose, moralities, and
goals of the machine. Intention is a primal element in
the development of trust because intention sets the
general bounds for expectation and operates as a
source for meaning during uncertainty (Desai et al.
2009, Lee and See 2004, Lyons 2013). Therefore,
training should introduce the intentional model as
early as possible but also provide cross-references
throughout. Intention is only as good as the situation
allows (Gollwitzer and Sheeran 2006). Therefore, the
boundary conditions of the intentional model will be
most apparent if the trainee observes the machine
attempting to stay true to its intentional model under
difficult circumstances such as conflicting goals, eth-
ical dilemmas, or morally contentious situations. In
each scenario scaffolding could remind the trainee of
the original intentions, explain why the present situ-
ation might prevent the system from staying true to
a given intent, or ask the trainee to generate his or her
own reasons why original intention and actual out-
comes differed.

The environmental model is another factor of
transparency consisting of the awareness of the
machine to its environment. An understanding of
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how the machine collects and uses environmental
information allows a user to anticipate machine
actions, derive meaning from anomalous output, and
adapt to novel environments (Hancock, Billings, and
Schaefer 2011; Lee and See 2004; Lyons 2013). Simi-
lar to the intent model, knowledge of the environ-
mental model is foundational to establishing accurate
trust, but the very nature of the environmental mod-
el also makes it highly situation specific. Therefore,
the environmental model must also be addressed
both early, to deliver the overarching principles, and
throughout training, to provide nuanced examples.
Environmental modeling is only as good as the col-
lection and processing of situational information
allows. Therefore, the more a trainee observes how
incomplete, conflicting, or incorrect situational input
affects the machine state, the faster identification of
environmental model boundary conditions will
occur. In each scenario, scaffolding could highlight
important but overlooked environmental informa-
tion, explain suspected conflicts among stimuli, or
offer advice about how to recover from a loss of situ-
ational awareness.

The task factor of transparency consists of how the
machine accomplishes its responsibilities. Knowledge
of how the system executes assigned tasks is impor-
tant for setting realistic expectations and accurately
predicting future behavior because interpositional
knowledge provides an overall framework for under-
standing the purpose of the team and how each
member contributes (Baker et al.1992; Blickensderfer,
Cannon-Bowers, Salas 1998; Cannon-Bowers and
Salas 1998; Cannon-Bowers et al. 1998; Volpe, et al.
1996). The task model relates to perceptions of trust-
worthiness by helping to define the reliability and
robustness of the automated system, which leads to
trust, perceived utility, and reliance (Chen, Barnes,
and Harper-Sciarini 2011; Hancock, Billings, and
Schaefer 2011; Lee and See 2004; Sanchez et al. 2011).
In order to train the task model, scenarios could
showcase a variety of tasks assigned to the system —
some of which it performs well or adequately and
some poorly or less than adequately. All the while,
instructional scaffolding can help foster mastery of
the taskwork model. For example, slowing scenarios
down could provide the time needed to adequately
explain the component, coordinative, and dynamic
relationships among task products. Additionally, the
true reliability of the system could be tracked and
summary information presented to the trainee con-
tinuously, at important decision points, or at the end
of scenarios. Regardless of approach, the goal is to
ensure the trainee can differentiate between condi-
tions that allow or do not allow the machine to be
trusted in completing its taskwork.

The teamwork model focuses on the interaction
among team members independent of taskwork.
Potential skills in the model include adaptability,
feedback or communication, and coordination (Can-

non-Bowers et al. 1995; Salas et al. 1992). Knowledge
of the teamwork model is important in the develop-
ment of accurate trustworthiness perceptions because
teamwork defines interaction among members and
reinforces trust (Desai et al. 2009; Sheng, Tian, and
Chen 2010; Hancock, Billings, and Schaefer 2011).
Participating in progressively more difficult scenarios
alongside the autonomous agent will help to develop
teamwork skills because the trainee will become more
proficient at interacting and coordinating with the
system and collectively adapting to new situations.
Instructional scaffolding can help foster mastery of
the teamwork model through actions such as offering
suggestions on how best to cooperate or coordinate
with the system, directing trainee attention to missed
requests for assistance from the system, or providing
immediate and specific feedback after the execution
of teamwork behaviors.

The analytic facet of transparency is akin to how
the machine processes information and makes deci-
sions. As such, the analytic model has direct ties to
each of the other transparency factors: intention and
environment serve as input to the analytic model
while taskwork and teamwork are the processes and
observable outputs (Lee and See 2004, Lyons 2013).
Of all the transparency factors, the analytic model
provides the most complete understanding of the
machine and is important to trust because a holistic
understanding provides for realistic expectations,
promotes more accurate predictions, and allows users
to evaluate critically any errors that might occur
(Cuevas et al. 2007; Hancock et al. 2011; Uggirila et
al. 2004). When using IS scenario-based training to
foster trust through understanding of the analytic
model, each scenario should highlight select
strengths or weaknesses of the analytic processes. As
each scenario gets more complicated, the trainee can
observe when the analytic model works well, when it
only performs adequately, and when it fails. Addi-
tionally, scaffolding can provide feedback, present
hints, offer explanations, and question trainees to
develop a deep understanding of this transparency
factor. From these experiences, the trainee will better
understand when it is and is not appropriate to trust
the machine.

Conclusion
Verification and validation of truly autonomous sys-
tems presents a challenge to contemporary methods
based on brute force, labor-intensive analysis of code.
When considering future autonomous systems, such
methods are as outdated as they are intractable. The
research and development community is in need of
novel V&V methods that allow unpredictable, learn-
ing-based systems to be tested. These approaches
necessitate collaboration between the AI community
and social scientists both to develop novel represen-
tations and mathematical formalizations of
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autonomous systems and also to test out methods to
ensure that the complexity of AI can be condensed
into meaningful chunks for individuals who exist
outside of the AI community. Levels of human-
machine trust will be more accurate if transparency is
considered (Lyons 2013). Training based on testing
the intentional, task-based, analytical, teamwork, and
environment aspects of transparency can also be used
to establish predictability based on the system’s
behavior in a series of scenarios using techniques like
IS. The present article concludes with a call on the AI
community (that is, designers) to consider the impor-
tance of ensuring that future AI systems be not only
trustworthy, but that they be developed and tested
with the appropriate affordances to promote appro-
priate trust among users and testers. 
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