
For a long time, science fictions writers and scientists
have been entertaining the idea of the speaking
machine — an automaton, computer, or robot that you

could interact with by means of natural language, just like
we communicate with each other. In his seminal paper Com-
puter Machinery and Intelligence, Alan Turing argued that
this ability would indeed be a defining feature of intelligence
(Turing 1950). If a human subject would sit at a terminal and
chat with an unknown partner without being able to tell
whether it is another human or a machine, we would have
managed to create artificial intelligence. Since then, this
thought experiment has been followed up by attempts at
actually building such a system, from the artificial psy-
chotherapist Eliza (Weizenbaum 1966), to customer service
chatbots on websites, and now (with the addition of speech)
voice assistants in our mobile phones, such as Apple’s Siri and
Microsoft’s Cortana. While this development has indeed
shown impressive progress in terms of user acceptance (per-
haps mostly thanks to breakthroughs in speech recognition),
these systems rely on a fairly simplistic model of human
interaction, where two interlocutors exchange utterances
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n When humans interact and collabo-
rate with each other, they coordinate
their turn-taking behaviors using verbal
and nonverbal signals, expressed in the
face and voice. If robots of the future are
supposed to engage in social interaction
with humans, it is essential that they
can generate and understand these
behaviors. In this article, I give an
overview of several studies that show
how humans in interaction with a
humanlike robot make use of the same
coordination signals typically found in
studies on human-human interaction,
and that it is possible to automatically
detect and combine these cues to facili-
tate real-time coordination. The studies
also show that humans react naturally
to such signals when used by a robot,
without being given any special instruc-
tions. They follow the gaze of the robot
to disambiguate referring expressions,
they conform when the robot selects the
next speaker using gaze, and they
respond naturally to subtle cues, such as
gaze aversion, breathing, facial ges-
tures, and hesitation sounds.



using a very strict turn-taking protocol. In a written
chat, the end of a turn is typically marked with the
return key, and voice assistants typically use a button
or a key word (like Amazon’s “Alexa”) to initiate a
turn, and then a long pause to mark the end. 

Contrary to this, most conversational settings in
everyday human interaction do not have such strict
protocols, with the exception of very special situa-
tions such as communication over a walkie-talkie.
Spoken interaction is typically coordinated on a
much finer level, and humans are very good at
switching turns with very short gaps (around 200 ms)
and little overlap. Humans also give precisely timed
feedback in the middle of the interlocutor’s speech in
the form of very short utterances (so-called
backchannels, such as “mhm”) or head nods. Anoth-
er notable property of everyday human interaction is
that it is often physically situated, which means that
the space in which the interaction takes place is of
importance. In such settings, there might be several
interlocutors involved (so-called multiparty interac-
tion), and there might be objects in the shared space
that can be referred to. Also, the interaction might
revolve around some joint activity (such as solving a
problem), and the speech has to be coordinated with
this activity. An important future application area for
spoken language technology where all these issues
will become highly important is human-robot inter-
action. Robots of the future are envisioned to help
people perform tasks, not only as mere tools, but also
as autonomous agents interacting and solving prob-
lems together with humans. 

Another notable limitation with chat bots and
voice assistants of today is that they almost exclu-
sively focus on the verbal aspect of communication,
that is, the words that are written or spoken. But
human communication is also filled with nonverbal
signals. It is important not just which words are spo-
ken, but also how they are spoken — something
speech scientists refer to as prosody (the melody,
loudness, and rhythm of speech). Depending on the
prosody, the speaker can be perceived as certain or
uncertain, and utterances can be perceived as state-
ments or questions. There are also other nonverbal
aspects of speech that have communicative func-
tions, such as breathing and laughter. Another aspect
that is typically missing is the face, which includes
important signals such as gaze, facial expressions,
and head nods. What is especially interesting with
these nonverbal signals, which will be the focus of
this article, is that they are highly important for real-
time coordination. Thus, if a robot is supposed to be
involved in more advanced joint activities with
humans, it should be able to both understand and
generate nonverbal signals. 

However, just because we manage to implement
these things in social robots, it is not certain that
humans will display these behaviors toward the
robot, and react to the robot’s nonverbal behavior in

an expected way. Also, processing these signals and
making use of them in a spoken dialogue system in
real time is a nontrivial task. In this article, I will sum-
marize some of the results from several studies done
at KTH to address these questions. 

Research Platform
Before discussing the challenges of real-time coordi-
nation in human-robot interaction, I will present the
research platforms that we have developed at KTH:
the robot head Furhat and the interaction framework
IrisTK. I will also present two different application
scenarios that we have developed, which pose differ-
ent types of challenges when it comes to modeling
turn-taking, feedback, and joint attention in human-
robot interaction. 

The Furhat Robot Head
The face carries a lot of information — it provides the
speaker with a clear identity, the lip movements help
the listener to comprehend speech, facial expressions
can signal attitude and modify the meaning of what
we say, head nods can provide feedback, and the gaze
helps the listener to infer the speaker’s visual focus of
attention. Until recently, the standard solution for
giving conversational agents a face has been to use
an animated character on a display, so-called embod-
ied conversational agents (or ECAs for short).  The
importance of facial and bodily gestures in ECAs has
been demonstrated in several studies (Cassell et al.
2000). However, when it comes to physically situat-
ed interaction, animated characters on two-dimen-
sional (2D) displays suffer from the so-called Mona
Lisa effect (Al Moubayed, Edlund, and Beskow 2012).
This means that it is impossible for the observer to
determine where in the observer’s physical space the
agent is looking. Either everyone in the room will
perceive the agent as looking at them, or nobody
will, which makes it impossible to achieve exclusive
mutual gaze with just one observer. This has impor-
tant implications for many human-robot interaction
scenarios, where there may be several persons inter-
acting with the robot, and where the robot may look
at objects in the shared space. 

To combine the advantages of animated faces with
the situatedness of physical robotic heads, we have
developed a robot head called Furhat at KTH (Al
Moubayed, Skantze, and Beskow 2013), as seen in fig-
ures 1–3. An animated face is back-projected on a
static mask, which is in turn mounted on a mechan-
ic neck. This allows Furhat to direct his gaze using
both head pose (mechanic) and eye movements (ani-
mated). Compared to completely mechatronic robot
heads, this solution is more flexible (the face can eas-
ily be changed by switching mask and animation
model), and allows for very detailed facial expres-
sions without generating noise. To validate that this
solution does not suffer from the Mona Lisa effect,
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we have done a series of experiments, where we sys-
tematically compared Furhat with an animated agent
on a 2D display, and found that Furhat can indeed
achieve mutual gaze in multiparty interaction, and
that subjects can determine the target of Furhat’s
gaze in the room nearly as well as the gaze of a
human. Furthermore, we have shown that Furhat’s
animated lip movements improve speech compre-
hension significantly under noisy conditions (Al
Moubayed, Skantze, and Beskow 2013).

Interaction Scenarios
In this article, I will discuss results from two different
human-robot interaction scenarios. In the first sce-
nario, depicted in figure 1, Furhat instructs a human
on how to draw a route on a map (Skantze, Hjal-
marsson, and Oertel 2014). A human subject and the
robot are placed face to face with a large printed map
on the table between them, which constitutes a tar-
get for joint attention. The robot describes the route,
using the landmarks on the map, and the subject is
given the task of drawing the route on a digital map
in front of her. In this task, the robot has to coordi-
nate the information delivery with the human’s exe-
cution of the task (drawing the route). To this end,
the robot has to “package” the instructions in appro-
priately sized chunks and invite feedback from the
user (Clark and Krych 2004). The user then has to fol-
low these instructions and give feedback about the
task progression. Together, they continuously have to
make sure that they attend to the same part of the
map. The system was tested with 24 recruited partic-
ipants. 

In the second scenario, depicted in figure 2, two
humans play a collaborative card-sorting game
together with Furhat (Skantze et al. 2015). The task
could for example be to sort a set of inventions in the
order they were invented, or a set of animals based
on how fast they can run. Since the game is collabo-

rative, the humans have to discuss the solution
together with each other and Furhat. However,
Furhat is programmed not to have perfect knowledge
about the solution. Instead, Furhat’s behavior is
motivated by a randomized belief model. This means
that the humans have to determine whether they
should trust Furhat’s belief or not, just like they have
to do with each other. Similar to the first scenario,
the touch table with the cards constitutes a target for
joint attention. However, they are different in that
this task requires coordination among three partici-
pants (so-called multiparty interaction), and is of a
more open, conversational nature, where the partic-
ipants’ roles are more symmetrical. This system was
exhibited during one week at the Swedish National
Museum of Science and Technology in November
2014, where we recorded almost 400 interactions
with users from the general public, including both
children and adults.1

Modeling the Interaction Using IrisTK
For a robot to engage fully in face-to-face interaction,
the underlying system must be able to perceive, inter-
pret, and combine a number of different auditory
and visual signals and be able to display these signals
in the robot’s voice and face. To facilitate the imple-
mentation of such systems, we have developed an
open source framework called IrisTK,2 which pro-
vides a modular architecture and a set of modules for
modeling human-robot interaction (Skantze and Al
Moubayed 2012). It has been used to implement a
number of different systems and experimental
setups, including the two settings described above. I
will only give a brief overview here, but the interest-
ed reader can refer to Skantze, Johansson, and
Beskow (2015) for a more detailed description of how
it was used in the card-sorting game. 

The most important components are schematical-
ly illustrated in figure 3. The speech from the two

Figure 1. Furhat Instructing a Human Subject on How to Draw a Route on a Map.

R  [looking at map] continue
 toward the lights, ehm. . .
U [drawing]
R until you stand south of the
 stop lights [looking at user]
U [drawing] alright
 [looking at robot]
R [looking at map] continue
 and pass east of the lights...
U okay [drawing]
R ...on your way towards the
 tower [looking at user]
U Could you take that again?



users is picked up either by close talking micro-
phones or by a microphone array and is recognized
and analyzed in parallel, which allows Furhat to
understand both users, even when they are talking
simultaneously. To visually track the users that are in
front of Furhat, a Microsoft Kinect camera is used,
which provides the system with information about
the position and rotation of the users’ heads (as a
rough estimation for their visual focus of attention).
These inputs, along with the movement of the cards
on the touch screen table, are sent to a situation
model, which merges the multimodal input and
maintains a three-dimensional (3D) representation
of the situation. A dialogue flow module orchestrates

the spoken interaction, based on events from the sit-
uation model, such as someone speaking, shifting
attention, entering or leaving the interaction, or
moving cards on the table. An attention flow module
keeps Furhat’s attention to a specified target (a user or
a card), by consulting the situation model. 

Coordination Mechanisms 
in Spoken Interaction

Many human social activities require some kind of
turn-taking protocol, that is, to negotiate the order in
which the different actions are supposed to take
place, and who is supposed to take which step when.
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Figure 2. Two Children Playing a Card-Sorting Game with Furhat.

U-1 and U-2 denote the two users. 

U-1  I wonder which one is the
 fastest [looking at table]

U-2 I think this one is fastest,
 what do you think? [looking
 at robot]
R I’m not sure about this, but I
 think the lion is the fastest 

U-1 Okay [moving the lion]

R Now it looks better

U-2 Yeah… How about the zebra?
R I think the zebra is slower 
 than the horse. What do you 
 think? [looking at U-2]

U-2 I agree

Figure 3. Overview of the Different Components and Some of the Events Flowing in the System.
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This is obvious when for example playing a game or
jointly assembling a piece of furniture, but it also
applies to spoken interaction. Since it is difficult to
speak and listen at the same time, speakers in dia-
logue have to somehow coordinate who is currently
speaking and who is listening. Studies on human-
human interaction have shown that humans coordi-
nate their turn-taking and joint activities using a
number of sophisticated coordination signals (Clark
1996). 

Some important concepts in this process are
shown in figure 4, which illustrates a possible inter-
action from the card-sorting game described above.
From a computational perspective, a useful term is
inter-pausal unit (IPU), which is a stretch of audio
from one speaker without any silence exceeding a
certain amount (such as 200 ms). These can relative-
ly easily be identified using voice activity detection.
A turn is then defined as a sequence of IPUs from a
speaker, which is not interrupted by IPUs from
another speaker. At certain points in the speech,
there are transition relevance places (TRPs), where a
shift in turn could potentially take place (Sacks, Sche-
gloff, and Jefferson 1974). As can be seen, there
might be pauses within a turn, where no turn-shift is
intended, but there might also be overlaps between
IPUs and turns. Even if gaps and overlaps are com-
mon in human-human interaction (Heldner and
Edlund 2010), humans are typically very good at
keeping them short (often with just a 200 ms gap). 

Traditionally, spoken dialogue systems have rested
on a very simplistic model of turn-taking, where a
certain amount of silence (say 700–1000 ms) is used
as an indicator for transition-relevance places. The
problem with this model is that turn-shifts often are
supposed to be much more rapid than this, and that
pauses within a turn often might be longer. This
means that the system will sometimes appear to give
sluggish responses, and sometimes interrupt the user.
Thus, silence is not a very good indicator for a turn-
shift. Another solution would be to make a continu-

ous decision on when to take the turn (say every 100
ms), or break up the user’s speech into several IPUs
using much shorter pause thresholds (such as 200
ms), and then try to identify whether the user is
yielding or holding the turn after each IPU. But what
should this decision be based on? 

Several studies have found that speakers use their
voice and face to give turn-holding and turn-yielding
cues (Duncan 1972; Koiso et al. 1998; Gravano and
Hirschberg 2011). For example, an IPU ending with
an incomplete syntactic clause (“how about...”) or a
filled pause (“uhm...”) typically indicates that the
speaker is not yielding the turn. But as the example
in figure 4 illustrates, it is not always clear whether
syntactically complete phrases like “what do you
think” are turn-final or not. Thus, speakers also use
prosody (that is, how the speech is realized) to signal
turn-completion. Three important components of
prosody are pitch (fundamental frequency), duration
(length of the phonemes) and energy (loudness). A
rising or falling pitch at the end of the IPU tend to be
turn-yielding, whereas a flat pitch tends to be turn-
holding. The intensity of the voice tends be lower
when yielding the turn, and the duration of the last
phoneme tends to be shorter. By breathing in, the
speaker may also signal that the she is about to speak
(thus holding the turn) (Ishii et al. 2014). Gaze has
also been found to be an important cue — speakers
tend to look away from the addressee during longer
utterances, but then look back at the addressee
toward the end to yield the turn (Kendon 1967). Ges-
tures can also be used as an indicator, where a non-
terminated gesture may signal that the turn is not
finished yet. A summary of these cues is presented in
table 1. Another important aspect to take into
account is the dialogue context. If a fragmentary
utterance (like “the lion”) can be interpreted as an
answer to a preceding question (“which animal do
you think is fastest?”), it is probably turn-yielding,
but might otherwise just be the start of a longer utter-
ance.
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Figure 4. Important Concepts When Modeling Turn-Taking.
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Detecting Coordination Signals
It is important to note that the cues listed in Table 1
are very schematic — all these cues do not conform
to these principles all the time. However, studies on
human-human dialogue have shown that the more
turn-yielding cues are presented together, the more
likely it is that the other speaker will take the turn
(Duncan 1972; Koiso et al. 1998; Gravano and
Hirschberg 2011). In this section, I will discuss how
machine learning can be used to combine and classi-
fy the rich source of multimodal features picked up
by the sensors in IrisTK, allowing the robot to coor-
dinate the interaction with humans. 

Knowing When to Speak 
in Multiparty Interaction
In a multiparty setting such as the card-sorting game,
the system does not only have to determine whether
the user is yielding the turn or not, but also to whom
the turn is yielded. If it is yielded to the other human,
the robot should not take the turn. To do this, it is
important to be able to detect the addressee of user
utterances. Other researchers have found that this
can be done by combining several different multi-
modal cues, using machine learning (Katzenmaier et
al. 2004; Vinyals, Bohus, and Caruana 2012). How-
ever, these studies have mostly been done in interac-
tion scenarios where the robot has a very clear role,
such as a butler or a quiz host. In such settings, the
user is typically either clearly addressing the robot or
another human. In the card-sorting game scenario,
where the robot is involved in a collaborative discus-
sion, it is often much harder to make a clear binary
decision, both regarding whether the turn was yield-
ed or not, and whether a particular speaker was being
addressed (Johansson and Skantze 2015). We there-
fore chose to combine these two decisions into one:
Should the robot take the turn or not? If not, it is
either because the current speaker did not yield the
turn, or because the turn was yielded to the other
human. There are also clear cases where Furhat is

“obliged” to take the turn, for example, if a user looks
at Furhat and asks a direct question. In between
these, there are cases where it is possible to take the
turn “if needed,” and cases where it is appropriate to
take the turn, but not obligatory. To create a gold
standard for these decisions, we gave an annotator
the task of watching videos of the interactions from
Furhat’s perspective, and choose the right turn-tak-
ing decision after each IPU, using a scale from 0 to 1
(where 0 means “don’t take the turn” and 1 means
“obliged to take the turn”). The result of this annota-
tion (the histogram for 10 dialogues) is shown in fig-
ure 5. To see if we could build a model for predicting
this decision using multimodal features, we first
trained an artificial neural network to make a deci-
sion between the two extreme categories: “Don’t”
and “Obliged” (Johansson and Skantze 2015). As can
be seen from the results in figure 5, head pose (as a
proxy for gaze) is a fairly good indicator, which might
not be surprising, since gaze can both serve the role
as a turn-yielding signal and as a device to select the
next speaker. But it also shows that combining fea-
tures from different modalities improves the per-
formance significantly, in line with studies on
human-human interaction. Another observation is
that many of the features seem to be redundant. It is
also interesting that card movement is a useful fea-
ture — if the user was not done with the current
movement, the turn was not typically yielded, which
is similar to how gestures can be informative (see
table 1). To complement this binary classifier, we also
built a regression model (using Gaussian processes) to
predict the continues outcome on the whole turn-
taking spectrum, which yielded an R-value of 0.677,
when all features were combined. 

In the end, the system will have to make a binary
decision of whether to take the turn or not, and so far
we have only used the binary classifier for making
this decision. The decision should, however, ulti-
mately also take into account what the robot actual-
ly has to contribute, and how important this contri-
bution is, not just to what extent the last turn was
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Table 1. Turn-Yielding and Turn-Holding Cues Typically Found in the Literature.

 Turn-yielding cue Turn-holding cue 

Syntax Complete Incomplete, Filled pause 

Prosody — Pitch Rising or Falling Flat 

Prosody — Intensity Lower Higher 

Prosody — Duration Shorter Longer 

Breathing Breathe out Breathe in 

Gaze Looking at addressee Looking away 

Gesture Terminated Nonterminated 



yielded or not. For future work, we therefore want to
combine this utility with the outcome of the regres-
sion model, in a decision-theoretic framework. If the
robot would have something very important to say,
it might not matter whether it is a good place to take
the turn or not. And the other way around, even if
the robot does not have anything important to con-
tribute, it might have to say something anyway, if it
has an obligation to respond. Intuitively, this is the
kind of decisions we as humans also continuously
make when engaged in dialogue.

Recognizing Feedback from the User
As another example of how the system can detect
coordination signals from the user, we will now turn
to the map-drawing task described earlier (Skantze,
Hjalmarsson, and Oertel 2014). In this scenario, the
robot mostly has the initiative and is supposed to
give route instructions in appropriately sized chunks,
awaiting feedback from the user before it can contin-
ue. If we look at the user’s verbal behavior, it mostly
consists of very short feedback utterances, including
“okay,” “yes,” “yeah, “mm,” “mhm,” “ah,” “all
right,” and “oh.” At a first look, it might seem like all
these are just variations of the same thing. However,
a more detailed analysis of the 1568 feedback utter-
ances in the data revealed that these utterances do
not always have the same meaning, and that the
choice of verbal token and its prosodic realization
was not arbitrary. Thus, the form of the feedback is
somehow related to its function. One important
aspect concerns the timing of the feedback in rela-
tionship with the drawing activity, which is illustrat-
ed in figure 6. A short feedback token such as “okay”
might in fact mean “okay, I will do that,” “okay, I

have done that now,” “okay, I am doing that now,”
or “okay, I have already done that (in the previous
step).” This distinction is important when timing the
next piece of instruction from the robot. By relating
the timing of the feedback with the timing of the
drawing activity, we can automatically derive these
functions and see how they relate to the form of the
feedback. For example, a short, high intensity “yes”
typically means, “I have already done that” (no need
to draw anything), whereas a long “okaay” or “mm”
with a rising pitch typically means, “I am doing
that.”  As can be seen in the figure, the likelihood
that the user will look up at the robot while giving
this feedback is also different. When no more draw-
ing is expected (the user wants the next piece of
information), we can see that it is more common to
look at the robot, thus in effect yielding the turn.
The prosodic features to some extent also follow the
turn-taking patterns listed in table 1, although the
relationship is not so clear cut. To see whether a sys-
tem could automatically detect and make use of
these cues in the system, we built a logistic regres-
sion classifier that could predict the meaning of the
feedback token with an F-score of 0.63 (which could
be compared to a majority class baseline of 0.153). 

These results show that the forms and functions of
feedback are closely linked. There are of course many
ways in which the functions of feedback can be cat-
egorized, where timing is one important aspect.
Another aspect is the user’s level of certainty, which
we also found to be reflected by the choice of token,
prosodic realization and gaze direction (Skantze,
Hjalmarsson, and Oertel 2014). Feedback reflecting
uncertainty is more often expressed with “ah” and
“mm,” and typically has a low intensity, longer dura-
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Figure 5. Annotation Result — The Histogram for 10 Dialogs.

Left: Histogram of annotated turn-taking decisions on a scale from 0 (must not take turn) to 1 (must take turn). Right: Prediction of Don’t
versus Obliged using an artificial neural network with different sets of features. 
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tion, and flat pitch. A system that can detect these
functions in the user’s feedback can better pace its
instructions, and know when to elaborate on them
further. 

Generating Coordination Signals
So far, we have looked at examples of how the robot
can perceive and interpret multimodal coordination
signals from the user(s). But another important ques-
tion is of course how the robot should be able to gen-
erate these signals using its voice and face. By gener-
ating the right coordination signals, the robot can
both facilitate the interaction and make it more
pleasant and less confusing for the user, but it can
also be used to shape the interaction according to
some criterion. 

Guiding Joint Attention
As discussed, we have found in perception experi-
ments that users can accurately determine the target
of Furhat’s gaze. This is important, since it potential-
ly allows for joint attention between the user and the
robot. However, it is not obvious whether humans
will actually utilize the robot’s gaze to identify refer-
ents in an ongoing dialogue, in the same way they
do with other humans. In the map-drawing task, we
investigated this by deliberately placing ambiguous
landmarks (such as two different towers) on the map
(Skantze, Hjalmarsson, and Oertel 2014). We then

experimented with three different conditions. First, a
condition where Furhat was looking at the landmark
he was referring to and looked up at the user at the
end of each instruction (CONSISTENT). Second, a
condition where Furhat randomly switched between
looking in the middle of the map and looking up at
the user (RANDOM). Third, a condition where we
placed a cardboard in front of Furhat, so that the user
could not see him (NOFACE). Since the users were
drawing the route on a digital map, we could pre-
cisely measure the drawing activity (pixels per sec-
ond) during the course of the instructions. The aver-
age drawing activity during ambiguous instructions
is illustrated in figure 7. The CONSISTENT gaze clear-
ly helped the user to find the object that was being
referred to, which is indicated by the increased draw-
ing activity during the pause. It is interesting to note
that the RANDOM condition was in fact worse than
the NOFACE condition, probably because the user
spent time trying to utilize the robot’s gaze (which
didn’t provide any help in that condition). This
shows that humans indeed try to make use of the
robot’s gaze, and can benefit from it, if the gaze sig-
nal is synchronized with the speech in a meaningful
way.  

Selecting the Next Speaker
We will now turn to the card-sorting game and see to
what extent Furhat is able to select the next speaker
in a multiparty interaction using gaze (Skantze,
Johansson, and Beskow 2015). Being able to shape
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Figure 6. How Prosody and Gaze in User Feedback Relates to the Coordination of the Ongoing Activity.
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the interaction in this way could be important, for
example, if it is desirable to involve both users in the
interaction and balance their speaking time. To
investigate this, we systematically varied the target of
Furhat’s gaze when asking questions during the
museum exhibition, either toward both users (look-
ing back and forth between them), toward the previ-
ous speaker (the one who spoke last), or toward the
other speaker. An analysis of 2454 questions posed by
Furhat is shown in figure 8. Overall, when Furhat tar-
geted one user, that person was most likely to take
the turn. If Furhat looked at both of them, the previ-
ous speaker was more likely to continue than the oth-
er speaker. If Furhat looked at the speaker who did
not speak last (Other), the addressee was even more
inclined to take the turn than if Furhat looked at the
Previous speaker. Thus, Furhat can indeed help to dis-
tribute the floor to both speakers. If we split these dis-
tributions depending on whether the addressee is
actually looking back at Furhat (mutual gaze), we can
see that this makes the addressee even more likely to
respond. This suggests that it is important for the
robot to actually monitor the user’s attention and
seek mutual gaze, in order to effectively hand over
the turn. To put it in other words, addressee selection
is also a coordinated activity. 

Claiming the Floor
Finally, we will look at how turn-holding cues can be
used by the robot to claim the floor. Of course, if the
robot is ready to speak immediately after the previous
turn, there might not be any need for special cues to
indicate the start of a turn. However, in the card-sort-
ing game, we used cloud-based speech recognizers
that give a relatively high accuracy, but the process
takes about a second to complete. This could easily
result in confusion if the system does not clearly sig-
nal that it has detected that it was being addressed
and is about to respond. If the user doesn’t get any
response, there is a risk that she will continue speak-
ing just when the robot starts to respond. A similar
phenomenon occurs in human-human interaction,
where speakers handle processing delays by starting
to speak without having a complete plan of what to
say (Levelt 1989). In such situations, it is common to
start the utterance with a turn-holding cue (see table
1), for example a filled pause (“uhm…”), to signal
that a response is about to come.

To investigate the effectiveness of such cues, we
systematically experimented with different turn-
holding cues for claiming the floor during the muse-
um exhibition (Skantze, Johansson, and Beskow
2015). Figure 9 shows a schematic example where
the user asks a question, and the system is not ready
to respond until about 1300 ms later. Depending on
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Figure 7. The Effect of Joint Attention on the Drawing Activity. 
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the turn-holding cue (THC) used, we can expect dif-
ferent probabilities for the user to continue speaking
in the window marked with “?” (which we want to
minimize). This way, we can measure the effective-
ness of different cues. As discussed above, humans
often gaze away to hold the floor. This behavior was
randomly used as a cue in 50 percent of the cases,
and was contrasted with keeping the gaze toward the
user in the other cases. In combination with this, we
randomly selected between four different other cues:

(1) filled pause (“uhm…”), (2) a short breath, (3)
smile, or (4) none of these. The breath was done by
opening Furhat’s mouth a bit and playing a recorded
inhalation sound. Although smiling is not an obvi-
ous turn-holding cue, the purpose of the smile was to
silently signal that the system somehow had reacted
to the user’s utterance. Thus, in total, we used 8 (2 x
4) different combinations of cues. In total, 991 such
instances were analyzed, and the result is shown in
figure 10. As can be seen, there is a main effect of gaz-
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Figure 8. The Next Speaker in the Interaction, Depending on Furhat’s and Users’ Gaze. 
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ing away, as expected. Looking at the other cues, they
were all significantly more inhibiting than no cue.
However, the strongest effect is achieved by combin-
ing cues, where a filled pause or a smile in combina-
tion with gazing away gives a significantly lower
probability that the user will continue speaking (less
than 15 percent), and no cues give a significantly
higher probability (33.8 percent). This indicates that
the cues humans use for coordinating turn-taking
can be transferred to a humanlike robot and have
similar effects. The fact that different combinations
of cues can achieve the same effect is encouraging,
since this makes it possible to use a more varied
behavior in the robot.

Conclusions and Future Directions
Taken together, these results show that coordination
is an important aspect of human-robot interaction,
and that this coordination should be modeled on a
much finer time scale than a simple turn-by-turn pro-
tocol. From studies of human-human interaction, we
know that this coordination is achieved through sub-
tle multimodal cues in the voice and face, including

words, prosody, gaze, gestures, and facial expres-
sions. Thus, if we want robots to take part in real-
time coordination, the underlying system must not
only be able to pick up these cues and model these
aspects, but the robot must also be able to express
them. This has to be taken into account in the design
of the robot. It could be argued that this coordina-
tion could be achieved through other signals than
the ones humans make use of, for example with a
lamp blinking when the robot is listening
(Funakoshi et al. 2010). However, I would argue that,
if possible, it makes more sense to use cues that we
humans already know how to process and (uncon-
sciously and automatically) pay attention to. It is
also more likely that we will be able to emotionally
relate to a robot that exhibits humanlike behaviors
than one with more machinelike behavior. Of
course, there is always a risk that the uncanny valley3

could give an opposite effect, but so far we have not
seen many signs of that with Furhat, possibly
because of its slightly cartoonish appearance. 

Our results show that users in interaction with a
humanlike robot make use of the same coordination
signals typically found in studies on human-human
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Figure 10. Probability That the User will Continue Speaking Depending on the Turn-Holding Cue(s) Used. 
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interaction. Thus, they do select the next speaker
using gaze, and their prosody reflects whether they
want to yield the turn or not. We have shown that
the system can detect these cues by automatic means
and combine them into turn-taking decisions with a
fairly high accuracy. But we have also found interest-
ing new correlations between how short feedback
utterances reflect their temporal relationship with
task progression (drawing the route on the map).
Thus, the automatic extraction of features and fine-
grained temporal resolution in our setups allow us to
make new findings that we haven’t seen in the liter-
ature on human-human interaction before. 

We have also seen that humans react naturally to
humanlike coordination signals when used by a
robot, without being given any special instructions.
They follow the gaze of the robot to disambiguate
referring expressions, they conform when the robot
selects the next speaker using gaze, and they natural-
ly interpret subtle turn-holding cues, such as gaze
aversion, breathing, facial gestures, and hesitation
sounds in an expected way. These things are very
important, if the robot should be able to shape the
interaction, and avoid confusion.  

A general finding that is consistent with the litera-
ture on human-human turn-taking is that face-to-
face interaction gives a rich source of multimodal
turn-taking cues, and that different combinations of
turn-taking cues can achieve a similar effect. This is
beneficial for human-robot interaction, since it
allows for more robust interpretation of turn-taking
cues (if there are uncertainties in some modalities),
and allows the system to display a more varied
behavior, while still achieving the same effect. 

There are several ways in which we plan to further
advance with this research program. When it comes
to interpreting coordination signals, we have shown
that this can be learned from data using an annotat-
ed corpus. However, we think that it is important
that this could also be learned directly from the inter-
action, without the need for annotation, both
because annotation is time consuming, but also
because users might have very different behaviors
that the robot should adapt to. By monitoring how
the robot’s turn-taking behavior results in either
smooth turn-taking or in interaction problems (such
as overlapping speech or long gaps), the robot can get
automatic feedback on its behavior and thereby train
the turn-taking model automatically in an unsuper-
vised (or implicitly supervised) fashion, without the
need for manual annotation. If several humans are
interacting with the robot, it should also be possible
to further improve the turn-taking model by observ-
ing where the humans take the turn when talking to
each other. 

Finally, we should add that the standard model of
turn-taking by Sacks, Schegloff, and Jefferson (1974)
has been challenged by other researchers, who argue
that speakers do not always try to minimize gaps and

overlaps, but that the criteria for successful interac-
tion is highly dependent on the kind of interaction
taking place (O’Connell, Kowal, and Kaltenbacher
1990). In this view, overlaps do not always pose prob-
lems for humans; rather they could lead to a more
efficient and engaging interaction. Thus, it is possible
that robots should not necessarily always avoid over-
laps. This view poses new challenges to our model,
since it would require a more continuous decision of
when to take the turn, rather than after each IPU. If
we want such behavior to be learned online (as out-
lined above), we would also need to come up with
new (measurable) criteria for successful interaction,
rather than just minimizing gaps and overlaps.
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Notes
1.  A video of the interaction can be seen at www.
youtube.com/watch?v=5fhjuGu3d0I.

2. www.iristk.net.

3. The phenomenon that nearly (but not perfectly) human-
like faces might be perceived as creepy (Mori 1970).
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